Python实现数据可视化,看如何监控你的爬虫

好,开始今天的文章。

今天主要是来说一下怎么可视化来监控你的爬虫的状态。

相信大家在跑爬虫的过程中,也会好奇自己养的爬虫一分钟可以爬多少页面,多大的数据量,当然查询的方式多种多样。今天我来讲一种可视化的方法。

关于爬虫数据在mongodb里的版本我写了一个可以热更新配置的版本,即添加了新的爬虫配置以后,不用重启程序,即可获取刚刚添加的爬虫的状态数据。

1.成品图

这个是监控服务器网速的最后成果,显示的是下载与上传的网速,单位为M。爬虫的原理都是一样的,只不过将数据存到InfluxDB的方式不一样而已, 如下图。

可以实现对爬虫数量,增量,大小,大小增量的实时监控。

2. 环境

InfluxDb,是目前比较流行的时间序列数据库;

Grafana,一个可视化面板(Dashboard),有着非常漂亮的图表和布局展示,功能齐全的度量仪表盘和图形编辑器,支持Graphite、zabbix、InfluxDB、Prometheus和OpenTSDB作为数据源

Ubuntu

influxdb(pip install influxdb)

Python 2.7

3. 原理

获取要展示的数据,包含当前的时间数据,存到InfluxDb里面,然后再到Grafana里面进行相应的配置即可展示;

4. 安装

4.1 Grafana安装

官方安装指导

安装好以后,打开本地的3000端口,即可进入管理界面,用户名与密码都是admin

4.2 InfulxDb安装

这个安装就网上自己找吧,有很多的配置我都没有配置,就不在这里误人子弟了。

5. InfluxDb简单操作

碰到了数据库,肯定要把增删改查学会了啊, 和sql几乎一样,只有一丝丝的区别,具体操作,大家可以参考官方的文档。

influx 进入命令行

CREATE DATABASE test 创建数据库

show databases 查看数据库

use test 使用数据库

show series 看表

select * from table_test 选择数据

DROP MEASUREMENT table_test 删表

6. 存数据

InfluxDb数据库的数据有一定的格式,因为我都是利用python库进行相关操作,所以下面将在python中的格式展示一下:

其中:

measurement, 表名

time,时间

tags,标签

fields,字段

可以看到,就是个列表里面,嵌套了一个字典。其中,对于时间字段,有特殊要求,可以参考这里, 下面是python实现方法:

所以,到这里,如何将爬虫的相关属性存进去呢?以MongoDB为例

那么现在我们已经往数据里存了数据了,那么接下来要做的就是把存的数据展示出来。

7.展示数据

7.1 配置数据源

以admin登录到Grafana的后台后,我们首先需要配置一下数据源。点击左边栏的最下面的按钮,然后点击DATA SOURCES,这样就可以进入下面的页面:

点击ADD DATA SOURCE,进行配置即可,如下图:

其中,name自行设定;Type 选择InfluxDB;url为默认的http://localhost:8086, 其他的因为我前面没有进行配置,所以默认的即可。然后在InfluxDB Details里的填入Database名,最后点击测试,如果没有报错的话,则可以进入下一步的展示数据了;

在学习中有迷茫不知如何学习的朋友小编推荐一个学Python的学习裙[663033228]无论你是大牛还是小白,是想转行还是想入行都可以来了解一起进步一起学习!裙内有开发工具,很多干货和技术资料分享!

7.2 展示数据

点击左边栏的+号,然后点击GRAPH

接着点击下图中的edit进入编辑页面:

从上图中可以发现:

中间板块是最后的数据展示

下面是数据的设置项

右上角是展示时间的设置板块,在这里可以选择要展示多久的数据

7.2.1 配置数据

在Data Source中选择刚刚在配置数据源的时候配置的NAME字段,而不是database名。

接着在下面选择要展示的数据。看着就很熟悉是不是,完全是sql语句的可视化。同时,当我们的数据放到相关的字段上的时候,双击,就会把可以选择的项展示出来了,我们要做的就是直接选择即可;

设置右上角的时间,则可以让数据实时进行更新与展示

因为下面的配置实质就是sql查询语句,所以大家按照自己的需求,进行选择配置即可,当配置完以后,就可以在中间的面板里面看到数据了。

8. 总结

到这里,本篇文章就结束了。其中,对于Grafana的操作我没有介绍的很详细,因为本篇主要讲的是怎么利用这几个工具完成我们的任务。

同时,里面的功能确实很多,还有可以安装的插件。我自己目前还是仅仅对于用到的部分比较了解,所以大家可以查询官方的或者别的教程资料来对Grafana进行更深入的了解,制作出更加好看的可视化作品来。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容