[转]Kafka到Hdfs的数据Pipeline整理

作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处
找时间总结整理了下数据从Kafka到Hdfs的一些pipeline,如下
1> Kafka -> Flume –> Hadoop Hdfs
常用方案,基于配置,需要注意hdfs小文件性能等问题.
GitHub地址: https://github.com/apache/flume
2> Kafka -> Kafka Hadoop Loader ->Hadoop Hdfs
Kafka Hadoop Loader通过为kafka Topic下每个分区建立对应的split来创建task实现增量的加载数据流到hdfs,上次消费的partition offset是通过zookeeper来记录的.简单易用.
GitHub地址: https://github.com/michal-harish/kafka-hadoop-loader
3> Kafka -> KaBoom -> Hadoop Hdfs
KaBoom是一个借助Krackle(开源的kafka客户端,能极大的减少对象的创建,提高应用程序的性能)来消费kafka的Topic分区数据随后写如hdfs,利用Curator和Zookeeper来实现分布式服务,能够灵活的根据topic来写入不同的hdfs目录.
GitHub地址: https://github.com/blackberry/KaBoom
4> Kafka -> Kafka-connect-hdfs -> Hadoop Hdfs
Confluent的Kafka Connect旨在通过标准化如何将数据移入和移出Kafka来简化构建大规模实时数据管道的过程。可以使用Kafka Connect读取或写入外部系统,管理数据流并扩展系统,而无需编写新代码.
GitHub地址: https://github.com/confluentinc/kafka-connect-hdfs
5> Kafka -> Gobblin -> Hadoop Hdfs
Gobblin是LinkedIn开源的一个数据摄取组件.它支持多种数据源的摄取,通过并发的多任务进行数据抽取,转换,清洗,最终加载到目标数据源.支持单机和Hadoop MR二种方式,而且开箱即用,并支持很好的扩展和二次开发.
GitHub地址: https://github.com/linkedin/gobblin

另外添加的资料
1、HiveKa : Apache Hive's storage handler that adds support in Apache Hive to query data from Apache Kafka
https://github.com/HiveKa/HiveKa
2、Confluent Platform - HDFS Connector
http://kaimingwan.com/post/kafka/kafkachi-jiu-hua-shu-ju-dao-hdfsde-fang-fa
http://docs.confluent.io/2.0.0/connect/connect-hdfs/docs/index.html
3、camus或gobblin
http://www.aboutyun.com/thread-20701-1-1.html

参考资料:
https://www.confluent.io/blog/how-to-build-a-scalable-etl-pipeline-with-kafka-connect
http://gobblin.readthedocs.io/en/latest/Getting-Started/
http://gobblin.readthedocs.io/en/latest/case-studies/Kafka-HDFS-Ingestion/
https://github.com/confluentinc/kafka-connect-blog
http://docs.confluent.io/3.1.1/connect/connect-hdfs/docs/index.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容