【转载】Ubuntu下跑通py-faster-rcnn、详解demo运作流程

在不同的服务器不同的机器上做过很多次实验,分别遇到各种不一样的错误并且跑通Py-Faster-RCNN,因此,在这里做一个流程的汇总:

一、下载文件:

首先,文件的下载可以有两种途径:

1、需要在官网上下载路径:https://github.com/rbgirshick/py-faster-rcnn

该方法的下载之后文件夹:py-faster-rcnn/caffe-fast-rcnn/下可能是空白:这个时候你是需要继续用命令行进行下载的

cd caffe-fast-rcnn

git submodule update --init --recursive

2、在Ubuntu下直接进行命令行的下载:(个人更推荐这一方法:比较稳定)

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

二、编译CAFFE:

1、下载完成后我们进入py-faster-rcnn//lib 文件下编译:

cd$FRCN_ROOT/lib

make

2、在py-faster-rcnn/caffe-fast-rcnn/文件路径下,下载Makefile.config文件:

链接网址:https://dl.dropboxusercontent.com/s/6joa55k64xo2h68/Makefile.config?dl=0

3、改变里面两个参数:(不改变的话后面的编译可以进行,但是跑到后面的demo 的时候会发现一大堆的头文件没有包含进来,如下图)

所以改变下面两个参数非常有必要:

#In your Makefile.config, make sure to have this line uncommentedWITH_PYTHON_LAYER:= 1#Unrelatedly, it's also recommended that you use CUDNNUSE_CUDNN:= 1

4、编译caffe:

cd$FRCN_ROOT/caffe-fast-rcnn

make -j64

可能会出现错误,如下所示:

解决办法:进入自己根目录下原来的Caffe下面拷贝相应的文件进入caffe-fast-rcnn

1.将./include/caffe/util/cudnn.hpp 换成最新版的caffe里的cudnn的实现,即相应的cudnn.hpp.

2. 将./include/caffe/layers里的,所有以cudnn开头的文件,例如cudnn_conv_layer.hpp。   都替换成最新版的caffe里的相应的同名文件。

3.将./src/caffe/layer里的,所有以cudnn开头的文件,例如cudnn_lrn_layer.cu,cudnn_pooling_layer.cpp,cudnn_sigmoid_layer.cu。

都替换成最新版的caffe里的相应的同名文件。如下图所示:

继续上面工作:

编译成功!继续前面命令行的编译 :

make pycaffe

编译正确:继续后面步骤;

三、下载训练好的模型:

1、命令行下载:

cd$FRCN_ROOT./data/scripts/fetch_faster_rcnn_models.sh

2、从ImageNet训练来的Caffe models (ZF, VGG16) pre-trained 模型下载命令(在SCRIPTS文件下包含下载的脚本,如果遇到错误一定是服务器上翻墙的问题)

./data/scripts/fetch_imagenet_models.sh

3、从VOC 2007训练来的Faster R-CNN models trained 模型下载命令(同上)

./data/scripts/fetch_faster_rcnn_models.sh

4、设置好以上下载之后,我们的./data目录下会出现需要的模型:

四、跑通demo.py文件:

上面已经编译好了caffe并且下载做好了训练好的模型何必要数据:我们现在可以开始跑demo了:

cd$FRCN_ROOT./tools/demo.py

跑通之后我们可以看到自己预测的图片的目标框:

五、我们不局限于跑通demo.py,我们需要了解demo.py文件里面的原理:

首先我们来切割demo.py文件里面的功能块:无非是:def vis_detections( )、def demo( )、def parse_args()

先来看一张功能解析图:

我们可以看到:demo.py文件的主流是黄色箭头、def vis_detections( ) 是紫色箭头、def demo( ) 是浅蓝色箭头、def parse_args() 是红棕色箭头。

随着箭头的延伸我们越来越深入了解里面的函数转换:其中:scores代表分数;boxes代表目标框对角两个点四个坐标值;dets代表各个框坐标和分数组成的矩阵、inds超过阈值符合要求的窗口对应的下标。

六、具体代码内容解释:

Po出一些详细的解释的手稿:


原文链接:http://blog.csdn.net/errors_in_life/article/details/70916583

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容