滴滴智能调度浅析

激活闲置资源、中心调度、高效匹配”,智能调度是滴滴的智能大脑和决策系统。

智能调度结合大数据与机器学习,搭建滴滴交通和决策大脑,收集每个城市,每一时刻所有交通出行相关数据,然后做出最优的决策(匹配、导航),从而提高出行效率。

智能大脑主要渗透到以下各个环节:预测目的地、价格预估、时间预估、最佳路径匹配、司机和乘客分配、订单分派、供需预测、预测乘客体验。

其中,司机和乘客匹配,订单分配是滴滴智能调度的核心。订单分配在于要完成司机和乘客的最优匹配,最大限度提升匹配率和成交率。

采用抢单模式+滴米算法来形成自己的调度算法

乘客发出一个订单,系统会推送给多位符合条件的司机,所有司机拒接后才会进行第二轮派单。

“滴米”是在司机端的一种虚拟积分,若乘客发出叫车需求,而两辆车与乘客距离是一样的,那么谁的“滴米”多,谁就能获得这个订单。有效杜绝了好单人人抢坏单没人接的窘境。好单扣滴米,差单得滴米。

中心调度 体现在派单制上,即依据一系列因素算出一个或者一批效率最优解直接派单。

高效匹配其中一个的关键点是按需分配,识别用户的准确需求,并在众多资源当中匹配到最合适的。

派单架构图

支撑这套智能调度的能力包括

1、资源实时管控能力:地理信息实时更新,描述整体资源情况,当用户发出用车需求后,第一时间根据资源情况,进行订单推送

2、订单热力图:基于对历史数据的统计并结合实时订单数据,给出当前全城范围内订单密集区域的分布,给司机提供有价值的听单位置参考,提高听单概率并减少司机空驶时间(比如某处举办大型演唱会等活动)。

3、供需预测:基于海量实时出行数据,以数十亿订单数据和数百万司机位置信息为基础,预测任意时间段各个区域的订单需求和运力分布状况。

4、运力调度:基于供需预测结果,大规模有序调动全城所有可用运力,实现资源最优化分配。

5、智能分单:在司机和乘客的历史数据中学习接单概率模型,提高司机和乘客的匹配度,利用运力的规模效应实时地从全局上最优化总体交通运输效率和乘客出行体验。

6、评分系统:行程结束后,预测乘客的体验是好是坏。由于历史订单中有些乘客会进行投诉,比如说拼车匹配欠佳、绕路。而有些用户则会给出好评。我们从大量历史数据学习出来哪些特征是导致乘客抱怨的原因,哪些特征会导致好评。综合分析大量乘客的打分和评语数据。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容