import torch
import torch.utils.data as Data
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
# hyper parameters
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12
# 回归数据
x = torch.unsqueeze(torch.linspace(-1,1,1000),dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
# plot dataset
# plt.scatter(x.numpy(),y.numpy())
# plt.show()
torch_dataset = Data.TensorDataset(data_tensor=x,target_tensor=y)
loader = Data.DataLoader(
dataset = torch_dataset,
batch_size = BATCH_SIZE,
shuffle = True,
num_workers = 2,
)
# default network
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.hidden = torch.nn.Linear(1,20) # hidden layer
self.predict = torch.nn.Linear(20,1) # output layer
def forward(self,x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
# different nets
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD,net_Momentum,net_RMSprop,net_Adam]
opt_SGD = torch.optim.SGD(net_SGD.parameters(),lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(),lr=LR,momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(),lr=LR,alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(),lr=LR,betas=(0.9,0.99))
optimizers = [opt_SGD,opt_Momentum,opt_RMSprop,opt_Adam]
loss_func = torch.nn.MSELoss()
losses_his = [[],[],[],[]]
for epoch in range(EPOCH):
print(epoch)
for step,(batch_x,batch_y) in enumerate(loader):
b_x = Variable(batch_x)
b_y = Variable(batch_y)
for net,opt,l_his in zip(nets,optimizers,losses_his):
output = net(b_x) # get output for every net
loss = loss_func(output,b_y) # compute loss for every net
opt.zero_grad() # claer gradients for net train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data[0]) # loss recoder
labels = ['SGD','Momentum','RMSprop','Adam']
for i,l_his in enumerate(losses_his):
plt.plot(l_his,label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim(0,0.2)
plt.show()
pytorch optimizer优化器
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 上一篇学习的UITableView的创建和基础使用,当然这只是单机而已,下面我们来学习联网,额!貌似学习的有点跳,...
- 随着越来越多的用户将生产系统迁移到 Azure 平台的虚拟机服务中,Azure 虚拟机的性能愈发被关注。传统的数据...
- 1、什么是JVM? JVM本质上就是一个软件,是计算机硬件的一层软件抽象,在这之上才能够运行Java程序,JAVA...