StreamingPro 提供API实现自定义功能

前言

最近给StreamingPro提供了两个新的模块,一个是streamingpro-manager,一个是streamingpro-api。 streamingpro-manager主要是提供一个部署,管理Spark任务的web服务。streamingpro则是增强了定制StreamingPro的能力。当然,还有就是对原有功能的增强,比如StreamingPro SQL Server 支持异步导出数据,使得交互式查询中,如果有海量结果需要返回成为可能。

虽然我们希望能够使用SQL(加上UDF函数)完成所有的任务,但是现实往往没有那么理想。为了能够照顾灵活性,我们提供了三种方式让用户更好的使用StreamingPro完成自己的需求。

三种方案简介

通过添加UDF函数。

UDF函数是可以直接在SQL中使用的。算是一个比较自然的增强方案。具体做法是:
首先,在配置文件添加一个配置,

"udf_register": {
    "desc": "测试",
    "strategy": "refFunction",
    "algorithm": [],
    "ref": [],
    "compositor": [
      {
        "name": "sql.udf",
        "params": [
          {
            "analysis": "streaming.core.compositor.spark.udf.func.Functions"
          }
        ]
      }
    ]
  }

udf_register, analysis等都可以自定义命名,最好是取个有意义的名字,方便管理。
streaming.core.compositor.spark.udf.func.Functions包含了你开发的UDF函数。比如我要开发一个mkString udf函数:

object Functions {
  def mkString(uDFRegistration: UDFRegistration) = {
    uDFRegistration.register("mkString", (sep: String, co: mutable.WrappedArray[String]) => {
      co.mkString(sep)
    })
  }
}

之后就可以在你的Job的ref标签上引用了

{
  "scalamaptojson": {
    "desc": "测试",
    "strategy": "spark",
    "algorithm": [],
    "ref": ['udf_register'],

你对应的任务就可以直接使用mkString函数了。

支持了script

在配置文件中,如果能嵌入一些脚本,在特定场景里也是很方便的,这样既不需要编译啥的了。截止到这篇发布为止,支持脚本的有:

Spark 1.6.+:

* 批处理

Spark 2.+:

 * 批处理
 * Spark Streaming处理

参看我文章StreamingPro 可以暴露出原生API给大家使用,http://www.jianshu.com/p/b33c36cd3481。但是script依然会有些问题,尤其是如果你使用需要sqlContext的脚本,因为分布式的问题,会产生一些不可预期bug。同时脚本写起来也不方便,不太好利用IDE。

通过标准API

现在我们提供了API,可以定制任何你要的环节,并且和其他现有的组件可以很好的协同,当然,你也可以使用原始的Compositor接口,实现 非常高级的功能。目前支持的版本和类型有:
Spark 2.+:

 * 批处理
 * Spark Streaming处理

这里有个spark streaming的例子,我想先对数据写代码处理,然后再接SQL组件,然后再进行存储(存储我也可能想写代码)

{
  "scalamaptojson": {
    "desc": "测试",
    "strategy": "spark",
    "algorithm": [],
    "ref": [
    ],
    "compositor": [
      {
        "name": "stream.sources",
        "params": [
          {
            "format": "socket",
            "outputTable": "test",
            "port": "9999",
            "host": "localhost",
            "path": "-"
          }
        ]
      },
      {
        "name": "stream.script.df",
        "params": [
          {
            "clzz": "streaming.core.compositor.spark.api.example.TestTransform",
            "source": "-"
          }
        ]
      },
      {
        "name": "stream.sql",
        "params": [
          {
            "sql": "select * from test2",
            "outputTableName": "test3"
          }
        ]
      },
      {
        "name": "stream.outputs",
        "params": [
          {
            "clzz": "streaming.core.compositor.spark.api.example.TestOutputWriter",
            "inputTableName": "test3"
          }
        ]
      }
    ],
    "configParams": {
    }
  }
}

要实现上面的逻辑,首先是创建一个项目,然后引入下面的依赖:

  <dependency>
            <groupId>streaming.king</groupId>
            <artifactId>streamingpro-api</artifactId>
            <version>0.4.15-SNAPSHOT</version>
        </dependency>

这个包目前很简单,只有两个接口:

//数据处理
trait Transform {
  def process(sQLContext: SQLContext, contextParams: Map[Any, Any], config: Map[String, String]): Unit
}

//数据写入
trait OutputWriter {
  def write(df: DataFrame, contextParams: Map[Any, Any], config: Map[String, String]): Unit
}

以数据处理为例,只要实现Transform接口,就可以通过stream.script.df 模块进行配置了。

 {
        "name": "stream.script.df",
        "params": [
          {
            "clzz": "streaming.core.compositor.spark.api.example.TestTransform",
            "source": "-"
          }
        ]
      },

同样,我们也对输出进行了编程处理。
下面是TestTransform的实现:

class TestTransform extends Transform {
  override def process(sQLContext: SQLContext, contextParams: Map[Any, Any], config: Map[String, String]): Unit = {
    sQLContext.sql("select * from test").createOrReplaceTempView("test2")
  }
}

TestOutputWriter也是类似的:

class TestOutputWriter extends OutputWriter {
  override def write(sQLContext: SQLContext, contextParams: Map[Any, Any], config: Map[String, String]): Unit = {
    sQLContext.sparkSession.table(config("inputTableName")).show(100)
  }
}

contextParams 是整个链路传递的参数,大家可以忽略。config则是配置参数,比如如上面配置中的source参数,clzz参数等。另外这些参数都是可以通过启动脚本配置和替换的,参看如何在命令行中指定StreamingPro的写入路径

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容