Python连接es笔记二之查询方式汇总

原文链接:Python连接es笔记二之查询方式汇总

上一节除了介绍使用 Python 连接 es,还有最简单的 query() 方法,这一节介绍一下几种其他的查询方式。

以下是本篇笔记目录:

  1. query() 方法介绍
  2. Q() 查询
  3. 排序
  4. 分页
  5. source() 指定返回字段
  6. extra() 操作
  7. count() 总数
  8. from_dict() 函数

1、query() 方法介绍

在上一节中介绍了 query() 的一个简单示例,如下:

s = Search(using="default").index("exam")

s = s.query("match", name="张三丰")

query() 中接受两个参数,第一个是字段查询的方式,比如这里是 match,也可以是 term,这个依照查询的目的来替换。

第二个则是查询的字段与值,比如这里是查询的 name 字段为 "张三丰" 的数据。

如果是有多个条件,比如 name="张三丰",address="中国" 的数据,这里的 = ,并非是完全等于的意思,而是会依照前面的查询方式,比如 match 或 term 进行类似的分词或者模糊搜索。

如果是上面多个条件的查询,可以直接在后面加上类似的 query():

s = s.query("match", name="张三丰").query("match", address="中国")

这两个 query() 通过链式操作连在一起转换成 es 语句就是使用 must 将多条件连接在一起,我们可以使用 to_dict() 方式来查看:

s.to_dict()

# {'query': {'bool': {'must': [{'match': {'name': '张三丰'}}, {'match': {'address': '中国'}}]}}}

2、Q() 查询

如果看过之前我写过的 Django 系列笔记,应该记得在 Django 里也有个 Q() 方法的查询,和这里的一样,也是用于条件的联合,与或非条件都可以实现。

引入方式如下:

from elasticsearch_dsl import Q

但是如果是在 Django 中使用 es 的连接,也是同样使用 Q() 方法,我们可以使用 as 来区分,这里我们对于 es 的 Q() 方法可以使用 ES_Q() 来区分:

from elasticsearch_dsl import Q as ES_Q

单个条件的使用 Q() 如下:

s = s.query(ES_Q("match", name="张三丰"))

如下使用 dict 形式的操作也是等效的:

s = s.query(ES_Q({"match": {"name": "张三丰"}}))

与操作

对于这两个条件,如果想要实现它们的与操作:

q1 = ES_Q("match", name="张三丰")
q2 = ES_Q("match", address="中国")

可以如下实现:

s = s.query(q1 & q2)

或操作

如果是想实现上面的或操作,可以如下:

s = s.query(q1 | q2)

非操作

如果是想取反,直接在条件前加一个 ~ 即可:

q1 = ~ES_Q("match", name="张三丰")
s = s.query(q1)

multi_match

如果是搜索多字段,可以如下操作:

q = ES_Q("multi_match", query="中国 张三丰", fields=["name", "address"])

s = s.query(q)

text.keyword 操作

对于 es 中 text 字段,前面我们介绍过 .keyword 的查询方式,是将 text 字段作为一个整体进行查询,在 ES_Q() 中,以下两种操作是等效的:

q = ES_Q({"term": {"address.keyword": "中国湖北省"}})

q = ES_Q("term", address__keyword="中国湖北省")

filter() 操作

在 es 中的 filter 操作,在 Python 中是一个 filter() 函数,可以直接使用:

q = ES_Q("term", name="张三丰")
s = s.filter(q)

range 操作

实现大小于的操作示例如下:

q = ES_Q({"range": {"age": {"gte": 21}}})
s = s.query(q)

exclude() 操作

如果是想取反,除了使用 ~Q(),还可以直接使用 exclude() 函数,这个和 Django 里的操作也是一样的:

q = ES_Q("term", name="张三丰")
s = s.exclude(q)

3、排序

如果是想对返回的结果进行排序操作,直接使用 .sort() 方法。

比如想对 age 字段排序,正序返回数据,可如下操作:

s = s.sort("age")

如果是想倒序返回,可以如下操作:

s = s.sort("-age")

多字段排序直接在后面跟上就行:

s = s.sort("-age", "name")

4、分页

Python 连接 es 进行分页,可以直接使用 Python 里的切片操作,比如:

s = s[5:10]

5、source() 指定返回字段

我们可以通过 source() 方法指定返回的字段:

s = s.source(["name", "address"])

source() 方法还可以接受 includes 和 excludes 参数来指定返回的字段或者不返回的字段,这个和 es 的原生处理方式是一致的:

s = s.source(
    includes=["address"],
    excludes=["name"]
)

6、extra() 操作

extra() 函数接受一些查询的额外属性,比如 size 参数决定返回条数,比如 from 参数可以决定从第几条数据开始返回,sort 参数决定排序方式,以及 _source 参数决定返回的字段。

比如我们想要返回的数据从第 2 条数据开始,返回两条,按照 name 字段进行排序,只返回 name 和 _id 字段,可以如下操作:

s = Search(using="default").index("exam")
s = s.extra(
    sort="name",
    _source=["name"],
    **{
        "from": 1,
        "size": 2
    }
)
response = s.execute()

7、count() 总数

前面介绍过获取符合条件的总数,可以通过 response.hits.total.value 的方式获得,其实对于 Search(),可以直接使用 count() 函数:

count = s.count()

8、from_dict() 函数

如果我们想直接运行 kibana 里执行的命令,可以使用 from_dict() 函数,比如:

s = s.from_dict(
  {
    "query": {
      "term": {
        "name": {
          "value": "张三丰"
        }
      }
    }
  }
)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容