这是我最想写的一篇文章之一了~ 因为这玩意真难......
- 目录:
算法:附录
算法(1):递归
算法(2):链表
算法(3):数组
算法(4):字符串
算法(5):二叉树
算法(6):二叉查找树
算法(7):队列和堆栈(附赠BFS和DFS)
算法(8):动态规划
算法(9):哈希表
算法(10):排序
算法(11):回溯法
算法(12):位操作
例题1:求目标和(Target Sum,在算法(7)堆栈习题3中出现过,这里给出另一种解法)。给定一个数组以及一个目标数S,你可以给数组中每个数分配 运算符‘+’ 或 ‘-’ 其中之一,使得数组之和为目标S。输出共有多少种分配方式。
输入: nums is [1, 1, 1, 1, 1], S is 3.
输出: 5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
代码解析:使用备忘录法。
class Solution:
def findTargetSumWays(self, nums: list, S: int, ) -> int:
if nums == []:
return 0
dic = {nums[0]: 1, -nums[0]: 1} if nums[0] != 0 else {0: 2}
for i in range(1, len(nums)):
tdic = {}
for d in dic:
tdic[d + nums[i]] = tdic.get(d + nums[i], 0) + dic.get(d, 0)
tdic[d - nums[i]] = tdic.get(d - nums[i], 0) + dic.get(d, 0)
dic = tdic
return dic.get(S, 0)
if __name__ == '__main__':
nums = [1, 1, 1, 1, 1]
S = 3.
solution = Solution()
steps = solution.findTargetSumWays(nums,S)
print(steps)
例题2:最大子数组(Maximum Subarray),给出一个数组,找到一个连续的子数组(至少一个元素),该子数组有最大和,返回该最大和。
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: [4,-1,2,1] 有最大和,为6.
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
curSum = maxSum = A[0]
for num in A[1:]:
# 这句代码可以理解成:curSum = num if curSum < 0 else num + curSum
curSum = max(num, curSum + num)
maxSum = max(maxSum, curSum)
return maxSum
例题3:解码方法(Decode Ways)。
给A到Z编码如下:
'A' -> 1
'B' -> 2
...
'Z' -> 26
现如今给一个非空字符串,里面由数字0到9组成,问有多少种解码方式?
例题:
输入: "226"
输出: 3
解释: "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).
注意事项:我当时做这道题的时候忽略了0这个特殊的存在,因为0不对应任何一个字母。比如一个字符串中出现了‘00’,那么该字符串输出就一定是0......下面给出了两种代码,供参考。
class Solution:
def numDecodings(self, s: str) -> int:
# v, w, p = 0, int(s>''), ''
# for d in s:
# v, w, p = w, (d>'0')*w + (9<int(p+d)<27)*v, d
# return w
# w tells the number of ways
# v tells the previous number of ways
# d is the current digit
# p is the previous digit
#dp[i] = dp[i-1] if s[i] != "0"
# +dp[i-2] if "09" < s[i-1:i+1] < "27"
if s == "": return 0
dp = [0 for x in range(len(s)+1)]
dp[0] = 1
for i in range(1, len(s)+1):
if s[i-1] != "0":
dp[i] += dp[i-1]
if i != 1 and "09" < s[i-2:i] < "27": #"01"ways = 0
dp[i] += dp[i-2]
return dp[len(s)]
例题4:丑数,丑数为只能被2,3,5整除的数(1定义为第一个丑数),输入一个整数n,输出第n个丑数。
输入:10
输出:12(前十个丑数序列:1, 2, 3, 4, 5, 6, 8, 9, 10, 12)
代码解释:用了三指针技术,对每个丑数再乘以2,3或5就是新的丑数,但是为了使得输出有序,需要三个指针来记录位置。
class Solution:
def nthUglyNumber(self, n: int) -> int:
ugly = [1]
i2, i3, i5 = 0, 0, 0
while n > 1:
u2, u3, u5 = 2 * ugly[i2], 3 * ugly[i3], 5 * ugly[i5]
umin = min((u2, u3, u5))
if umin == u2:
i2 += 1
if umin == u3:
i3 += 1
if umin == u5:
i5 += 1
ugly.append(umin)
n -= 1
return ugly[-1]
例题5:最长递增子序列(Longest Increasing Subsequence),给出一个未排序的整型数组,返回其最长递增子序列长度。
输入: [10,9,2,5,3,7,101,18]
输出: 4 (其中最长递增子序列为[2,3,7,101])
代码解释:(下文sub 数组里存放的元素可能不是实际的递增子序列,但其长度是准确的)
- initial sub = [ ].
- traversing the nums:
a) if val > sub's all elements, then subsequence length increased by 1, sub.append(val);
b) if sub[i-1] < val < sub[i], then we find a smaller value, update sub[i] = val. Some of the elements stored in the sub[ ] are known subsequences, and the other part is elements of other possible new subsequences. However, the length of the known subsequences is unchanged. - return the sub[ ]'s length.
Here is the solution's track, as we have nums = [8, 2, 5, 1, 6, 7, 9, 3],when we traversing the nums:
i = 0, sub = [8]
i = 1, sub = [2]
i = 2, sub = [2, 5]
i = 3, sub = [1, 5], # element has been changed, but the sub's length has not changed.
i = 4, sub = [1, 5, 6]
i = 5, sub = [1, 5, 6, 7]
i = 6, sub = [1, 5, 6, 7, 9]
i = 7, sub = [1, 3, 6, 7, 9] #done! Although the elements are not correct, but the length is correct.
Because of sub[ ] is incremental, we can use a binary search to find the correct insertion position.
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
# O(nlogn) solution with binary search
def binarySearch(sub, val):
lo, hi = 0, len(sub)-1
while(lo <= hi):
mid = lo + (hi - lo)//2
if sub[mid] < val:
lo = mid + 1
elif val < sub[mid]:
hi = mid - 1
else:
return mid
return lo
sub = []
for val in nums:
pos = binarySearch(sub, val)
if pos == len(sub):
sub.append(val)
else:
sub[pos] = val
return len(sub)
我先把常见问题写在这,省的日后忘了:
- 求一个字符串的最长回文子串
- 两个字符串的最长子序列
- 两个字符串的最长公共子串
公式比最长子序列更简单,如下所示:
- 背包问题
背包九讲PDF下载链接:http://vdisk.weibo.com/s/zmfTPG2vgAcNV
- 股票买卖问题
5种股票买卖问题
上面的第五道题,买卖需要冷却的问题,可参考下面链接,讲的更详细,代码也更精致:Best Time to Buy and Sell Stock with Cooldown