Spark On YARN 集群安装部署

学习spark,记录下来搭建环境及软件版本,供大家使用

软件环境

Centos6.5
jdk1.7.0_79
hadoop-2.7.3
scala-2.10.4
spark-2.0.0-bin-hadoop2.7

0. 序

所有linux系统均在root用户下使用,目的是为了省去权限麻烦,所以一律采用root用户

1. 环境准备

修改主机名

我们将搭建1个master,1个slave的方案。首先修改主机名vi /etc/hostname,在master上修改为master,其中一个slave上修改为slave1。

配置hosts

在每台主机上修改host文件

vi /etc/hosts

10.1.1.107      master
10.1.1.108      slave1

配置之后ping一下用户名看是否生效

ping slave1

SSH 免密码登录

默认情况下,Centos6.5已经自带了Openssh server。如果没有的话,可以使用以下命令安装

apt-get install openssh-server

在所有机器上都生成私钥和公钥

ssh-keygen -t rsa   # 一路回车

需要让机器间都能相互访问,就把每个机子上的id_rsa.pub发给master节点,传输公钥可以用scp来传输。

scp ~/.ssh/id_rsa.pub root@master:~/.ssh/id_rsa.pub.slave1

在master上,将所有公钥加到用于认证的公钥文件authorized_keys

cat ~/.ssh/id_rsa.pub* >> ~/.ssh/authorized_keys

将公钥文件authorized_keys分发给每台slave

scp ~/.ssh/authorized_keys root@slave1:~/.ssh/

在每台机子上验证SSH无密码通信

ssh master
ssh slave1

登陆后,如果想退出,则可以使用'

exit

关闭防火墙

由于多个端口的访问,所以最好在所有机器上关闭防火墙,生产环境则需要将端口号放入防火墙中

service iptables stop

结果如下

iptables:将链设置为政策 ACCEPT:filter [确定]
iptables:清除防火墙规则:[确定]
iptables:正在卸载模块:[确定]

2. 软件基础安装

安装 Java

从官网下载最新版 Java 就可以,在/usr/local目录下直接解压

tar -zxvf jdk-7u79-linux-x64.tar.gz

修改环境变量vi /etc/profile,添加下列内容,注意将home路径替换成你的:

export WORK_SPACE=/usr/local
export JAVA_HOME=$WORK_SPACE/jdk1.7.0_79
export JRE_HOME=/usr/local/jdk1.7.0_79/jre
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH
export CLASSPATH=$CLASSPATH:.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib

然后使环境变量生效,并验证 Java 是否安装成功。这里注意,source命令最好仅使用一次,因为多次使用会将路径复制多遍到Path下。

$ source /etc/profile   #生效环境变量
$ java -version         #如果打印出如下版本信息,则说明安装成功
java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)

安装 Scala

Spark官方要求 Scala 版本为 2.10.x,注意不要下错版本,我下载了 2.10.4版本 同样我们在/usr/local目录下直接解压

tar -zxvf scala-2.10.4.tgz

再次修改环境变量vi /etc/profile,添加以下内容:

export SCALA_HOME=$WORK_SPACE/scala-2.10.4
export PATH=$PATH:$SCALA_HOME/bin

同样的方法使环境变量生效,并验证 scala 是否安装成功

$ source /etc/profile   #生效环境变量
$ scala -version        #如果打印出如下版本信息,则说明安装成功
Scala code runner version 2.10.4 -- Copyright 2002-2013, LAMP/EPFL

3. 安装配置 Hadoop YARN

下载解压

从官网下载 hadoop-2.7.3 版本 同样我们在/usr/local解压

tar -zxvf hadoop-2.7.3.tar.gz

配置 Hadoop

cd /usr/local/hadoop-2.7.3/etc/hadoop进入hadoop配置目录,需要配置有以下7个文件:hadoop-env.shyarn-env.shslavescore-site.xmlhdfs-site.xmlmaprd-site.xmlyarn-site.xml

1.在hadoop-env.sh中配置JAVA_HOME

# The java implementation to use.
export JAVA_HOME=/usr/local/jdk1.7.0_79

2.在yarn-env.sh中配置JAVA_HOME

# some Java parameters
export JAVA_HOME=/usr/local/jdk1.7.0_79

3.在slaves中配置slave节点的ip或者host

slave1

4.修改core-site.xml

<configuration>
 <property>
     <name>fs.defaultFS</name>
     <value>hdfs://master:9000/</value>
 </property>
 <property>
      <name>hadoop.tmp.dir</name>
      <value>file:/usr/local/hadoop-2.7.3/tmp</value>
 </property>
</configuration>

5.修改hdfs-site.xml

<configuration>
 <property>
     <name>dfs.namenode.secondary.http-address</name>
     <value>master:9001</value>
 </property>
 <property>
     <name>dfs.namenode.name.dir</name>
     <value>file:/usr/local/hadoop-2.7.3/dfs/name</value>
 </property>
 <property>
     <name>dfs.datanode.data.dir</name>
     <value>file:/usr/local/hadoop-2.7.3/dfs/data</value>
 </property>
 <property>
     <name>dfs.replication</name>
     <value>3</value>
 </property>
</configuration>

6.修改mapred-site.xml

<configuration>
 <property>
     <name>mapreduce.framework.name</name>
     <value>yarn</value>
 </property>
</configuration>

7.修改yarn-site.xml

<configuration>
 <property>
     <name>yarn.nodemanager.aux-services</name>
     <value>mapreduce_shuffle</value>
 </property>
 <property>
     <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
     <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
 <property>
     <name>yarn.resourcemanager.address</name>
     <value>master:8032</value>
 </property>
 <property>
     <name>yarn.resourcemanager.scheduler.address</name>
     <value>master:8030</value>
 </property>
 <property>
     <name>yarn.resourcemanager.resource-tracker.address</name>
     <value>master:8035</value>
 </property>
 <property>
     <name>yarn.resourcemanager.admin.address</name>
     <value>master:8033</value>
 </property>
 <property>
     <name>yarn.resourcemanager.webapp.address</name>
     <value>master:8088</value>
 </property>
</configuration>

8.将配置好的hadoop-2.7.3文件夹分发给所有slaves

scp -r /usr/local/hadoop-2.7.3 root@slave1:/usr/local/

启动 Hadoop

在 master 上执行以下操作,就可以启动 hadoop 了。

cd /usr/local/hadoop-2.7.3/sbin    #进入hadoop目录
./bin/hadoop namenode -format     #格式化namenode
./start-dfs.sh               #启动dfs 
./start-yarn.sh              #启动yarn

验证 Hadoop 是否安装成功

可以通过jps命令查看各个节点启动的进程是否正常。在 master 上应该有以下几个进程:

$ jps  #run on master
3407 SecondaryNameNode
3218 NameNode
3552 ResourceManager
3910 Jps

在每个slave上应该有以下几个进程:

$ jps   #run on slaves
2072 NodeManager
2213 Jps
1962 DataNode

或者在浏览器中输入 http://master:8088 ,应该有 hadoop 的管理界面出来了,并能看到 slave1 节点(目前看不到,没有找到原因).

4. Spark安装

下载解压

进入官方下载地址下载最新版 Spark。我下载的是 spark-2.0.0-bin-hadoop2.7.tgz。 在/usr/local目录下解压

tar -zxvf spark-2.0.0-bin-hadoop2.7.tgz
mv spark-2.0.0-bin-hadoop2.7 spark-2.0.0    #原来的文件名太长了,修改下

配置 Spark

cd /usr/local/spark-2.0.0/conf    #进入spark配置目录
cp spark-env.sh.template spark-env.sh   #从配置模板复制
vi spark-env.sh     #添加配置内容

spark-env.sh末尾添加以下内容(这是我的配置,你可以自行修改):

export SCALA_HOME=/usr/local/scala-2.10.4
export JAVA_HOME=/usr/local/jdk1.7.0_79
export HADOOP_HOME=/usr/local/hadoop-2.7.3
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_MASTER_IP=master
SPARK_LOCAL_DIRS=/usr/local/spark-2.0.0
SPARK_DRIVER_MEMORY=1G

注:在设置Worker进程的CPU个数和内存大小,要注意机器的实际硬件条件,如果配置的超过当前Worker节点的硬件条件,Worker进程会启动失败。 vi slaves在slaves文件下填上slave主机名:

slave1

将配置好的spark-2.0.0文件夹分发给所有slaves

scp -r /usr/local/spark-2.0.0 root@slave1:/usr/local/

启动Spark

cd /usr/local/spark-2.0.0/sbin
./start-all.sh

验证 Spark 是否安装成功

用jps检查,在 master 上应该有以下几个进程:

$ jps
7949 Jps
7328 SecondaryNameNode
7805 Master
7137 NameNode
7475 ResourceManager

在 slave 上应该有以下几个进程:

$jps
3132 DataNode
3759 Worker
3858 Jps
3231 NodeManager

5. 运行示例

搭建成功后,我们可以直接运行spark自带的例子,进行验证

cd /usr/local/spark-2.0.0/bin
./run-example org.apache.spark.examples.SparkPi

运行结果:

16/09/15 22:24:19 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 149 ms on localhost (2/2)
16/09/15 22:24:19 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
16/09/15 22:24:19 INFO scheduler.DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 2.156422 s
Pi is roughly 3.14159570797854
16/09/15 22:24:19 INFO server.ServerConnector: Stopped ServerConnector@24d95700{HTTP/1.1}{0.0.0.0:4040}
16/09/15 22:24:19 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@4925d132{/stages/stage/kill,null,UNAVAILABLE}
16/09/15 22:24:19 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@13dbe345{/api,null,UNAVAILABLE}

说明已经成功

7. spark shell使用示例

cd /usr/local/spark-2.0.0/bin
./spark-shell

随后会出现如下界面

Welcome to
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_79)
Type in expressions to have them evaluated.
Type :help for more information.

终端测试

var data = Array(1,2,3,4,5)
var distData = sc.parallelize(data)
var totalSum = distData.reduce((a,b)=>a+b)
println(totalSum)

计算结果为15 继续计算

var mapRdd = distData.map(x=>x*2)
var totalSum = mapRdd.reduce((a,b)=>a+b)

计算结果:30

8.感激

感谢博客
Jark's Blog

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容