weak
是弱引用,用weak
描述修饰或者所引用对象的计数器不会加一,并且会在引用的对象被释放的时候自动被设置为nil
,大大避免了野指针访问坏内存引起崩溃的情况,它主要用于解决循环引用。
NSObject *obj = [[NSObject alloc] init];
__weak id obj1 = obj;
obj1 = @"123";
...
0000000100000efd call imp___stubs__objc_initWeak
0000000100000f02 lea rdi, qword [rbp+var_20] ; argument "addr" for method imp___stubs__objc_storeWeak
0000000100000f06 lea rsi, qword [cfstring_123] ; @"123", argument "value" for method imp___stubs__objc_storeWeak
0000000100000f0d mov qword [rbp+var_28], rax
0000000100000f11 call imp___stubs__objc_storeWeak
0000000100000f16 lea rdi, qword [rbp+var_20] ; argument "instance" for method imp___stubs__objc_destroyWeak
0000000100000f1a mov dword [rbp+var_4], 0x0
0000000100000f21 mov qword [rbp+var_30], rax
0000000100000f25 call imp___stubs__objc_destroyWeak
...
从上面代码可以看出创建weak
是通过objc_initWeak
方法,赋值是通过objc_storeWeak
,跟属性用weak
关键字调用的同一个方法,销毁是通过objc_destroyWeak
方法。
id objc_initWeak(id *location, id newObj)
{
if (!newObj) {
*location = nil;
return nil;
}
return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object*)newObj);
}
id objc_storeWeak(id *location, id newObj)
{
return storeWeak<DoHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object *)newObj);
}
从上面可以看出weak
的核心都是调用storeWeak
方法,区别是模板的几个参数,创建是没有旧值得,之后赋值都是有旧值得。
template <HaveOld haveOld, HaveNew haveNew,
CrashIfDeallocating crashIfDeallocating>
static id storeWeak(id *location, objc_object *newObj)
{
Class previouslyInitializedClass = nil;
id oldObj;
SideTable *oldTable;
SideTable *newTable;
retry:
if (haveOld) {
oldObj = *location;
oldTable = &SideTables()[oldObj];
} else {
oldTable = nil;
}
if (haveNew) {
newTable = &SideTables()[newObj];
} else {
newTable = nil;
}
SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
//旧值改变了,就再走一遍
if (haveOld && *location != oldObj) {
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
goto retry;
}
if (haveNew && newObj) {
Class cls = newObj->getIsa();
// 判断 isa 非空且已经初始化
if (cls != previouslyInitializedClass &&
!((objc_class *)cls)->isInitialized())
{
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
_class_initialize(_class_getNonMetaClass(cls, (id)newObj));
previouslyInitializedClass = cls;
goto retry;
}
}
if (haveOld) {//清理旧值
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
if (haveNew) {
newObj = (objc_object *)
weak_register_no_lock(&newTable->weak_table, (id)newObj, location,
crashIfDeallocating);
// weak_register_no_lock returns nil if weak store should be rejected
// Set is-weakly-referenced bit in refcount table.
if (newObj && !newObj->isTaggedPointer()) {
newObj->setWeaklyReferenced_nolock();
}
// Do not set *location anywhere else. That would introduce a race.
*location = (id)newObj;
}
else {
// No new value. The storage is not changed.
}
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
return (id)newObj;
}
这个函数首先引入了第一个结构SideTable
,还可以通过SideTables
得到这个结构的对象,看下他们的结构。
alignas(StripedMap<SideTable>) static uint8_t
SideTableBuf[sizeof(StripedMap<SideTable>)];
static void SideTableInit() {
new (SideTableBuf) StripedMap<SideTable>();
}
static StripedMap<SideTable>& SideTables() {
return *reinterpret_cast<StripedMap<SideTable>*>(SideTableBuf);
}
SideTableInit
这个方法在程序开始运行的时候都调用了,它初始化了StripedMap
,而且SideTables()
获取到就是这个,每次获取都是最新值。
template<typename T>
class StripedMap {
enum { CacheLineSize = 64 };
#if TARGET_OS_EMBEDDED
enum { StripeCount = 8 };
#else
enum { StripeCount = 64 };
#endif
struct PaddedT {
T value alignas(CacheLineSize);
};
PaddedT array[StripeCount];
static unsigned int indexForPointer(const void *p) {
uintptr_t addr = reinterpret_cast<uintptr_t>(p);
return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
}
public:
T& operator[] (const void *p) {
return array[indexForPointer(p)].value;
}
const T& operator[] (const void *p) const {
return const_cast<StripedMap<T>>(this)[p];
}
....
StripedMap
结构就有一个成员,PaddedT array[StripeCount]
,从这可以看出这个数组有64个PaddedT
结构的变量,每个PaddedT
结构占64个字节,也就是说StripedMap
结构大小就是4096个字节。PaddedT
在这里就是SideTable
。通过indexForPointer
方法可以看到,分配SideTable
的时候,是通过对象的地址的((addr >> 4) ^ (addr >> 9)) % StripeCount
运算得到的,因为最后是做64的模运算,所以结果只能是从0-63。
using spinlock_t = mutex_tt<LOCKDEBUG>;
template <bool Debug>
class mutex_tt : nocopy_t {
os_unfair_lock mLock;
...
struct SideTable {
spinlock_t slock;//本质就是os_unfair_lock锁
RefcountMap refcnts;//weak这里暂时用不上 arc会用到
weak_table_t weak_table;//weak表
SideTable() {
memset(&weak_table, 0, sizeof(weak_table));
}
~SideTable() {
_objc_fatal("Do not delete SideTable.");
}
void lock() { slock.lock(); }
void unlock() { slock.unlock(); }
void forceReset() { slock.forceReset(); }
// Address-ordered lock discipline for a pair of side tables.
template<HaveOld, HaveNew>
static void lockTwo(SideTable *lock1, SideTable *lock2);
template<HaveOld, HaveNew>
static void unlockTwo(SideTable *lock1, SideTable *lock2);
};
struct weak_table_t {
weak_entry_t *weak_entries;
size_t num_entries;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
当StripedMap
初始化成员array
的时候,就初始化了64个SideTable
,每个SideTable
初始化都会把weak_table
空间置为0。从上面可以看出来每一个弱引用都是一个weak_entry_t
对象。举个很形象的例子,有一个宿舍楼(SideTables
),他有64个宿舍(SideTable
),宿舍有很多个床位(weak_entry_t
),它会根据里面人的多少来进行适当地扩容,而且每个宿舍都有一把锁(spinlock_t
)来保护财产安全,当一个进去时就锁上,出来时解锁。至于怎么分配宿舍,是根据人的编号来行进的,在这里就是根据对象的地址,再根据上面的indexForPointer
方法来进行分配。
#define WEAK_INLINE_COUNT 4
#define REFERRERS_OUT_OF_LINE 2
struct weak_entry_t {
DisguisedPtr<objc_object> referent;
union {
struct {
weak_referrer_t *referrers;
uintptr_t out_of_line_ness : 2;
uintptr_t num_refs : PTR_MINUS_2;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
struct {
// out_of_line_ness field is low bits of inline_referrers[1]
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
};
};
bool out_of_line() {
return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
}
weak_entry_t& operator=(const weak_entry_t& other) {
memcpy(this, &other, sizeof(other));
return *this;
}
weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
: referent(newReferent)
{
inline_referrers[0] = newReferrer;
for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
inline_referrers[i] = nil;
}
}
};
经过后面的一些代码的验证,可以看出referent
它存放的是weak
要引用的对象,而inline_referrers
存放的是weak
对象本身,初始化为4个,如果有多于4的时候,会进行扩容,也就是有多个weak
指向同一个对象。至于DisguisedPtr<objc_object>
,你可以把它当成id
。有了这些,看后面的代码会清晰很多。
现在回过头看storeWeak
函数,haveOld
为真的时候,大部分情况是weak
指针指向新值了,还有一种情况是weak
属性的时候。weak_unregister_no_lock
函数是清理旧值的,现在先看注册新值的情况,是这个weak_register_no_lock
函数。
id weak_register_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id, bool crashIfDeallocating)
{
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
if (!referent || referent->isTaggedPointer()) return referent_id;
// 保证引用对象是否有效
bool deallocating;
// 是否有自定义的默认方法,如retain/release
if (!referent->ISA()->hasCustomRR()) {
//是否释放
deallocating = referent->rootIsDeallocating();
}
else {
BOOL (*allowsWeakReference)(objc_object *, SEL) =
(BOOL(*)(objc_object *, SEL))
object_getMethodImplementation((id)referent,
SEL_allowsWeakReference);
if ((IMP)allowsWeakReference == _objc_msgForward) {
return nil;
}
deallocating =
! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
}
if (deallocating) {
if (crashIfDeallocating) {
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
} else {
return nil;
}
}
// now remember it and where it is being stored
weak_entry_t *entry;
//获取weak引用对象
if ((entry = weak_entry_for_referent(weak_table, referent))) {
//如果存在就把weak对象 加进去
append_referrer(entry, referrer);
}
else {
//创建weak弱引用表关联
weak_entry_t new_entry(referent, referrer);
weak_grow_maybe(weak_table);
weak_entry_insert(weak_table, &new_entry);
}
// Do not set *referrer. objc_storeWeak() requires that the
// value not change.
return referent_id;
}
先一行一行分析创建weak
弱引用:
weak_entry_t new_entry(referent, referrer);
//对应于
weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
: referent(newReferent)
{
inline_referrers[0] = newReferrer;
for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
inline_referrers[i] = nil;
}
}
从这就能看出referent
对应的是weak
要引用的对象,inline_referrers
对应的是weak
本身。
static void weak_grow_maybe(weak_table_t *weak_table)
{
size_t old_size = TABLE_SIZE(weak_table);
// Grow if at least 3/4 full.
if (weak_table->num_entries >= old_size * 3 / 4) {
weak_resize(weak_table, old_size ? old_size*2 : 64);
}
}
static void weak_resize(weak_table_t *weak_table, size_t new_size)
{
size_t old_size = TABLE_SIZE(weak_table);
weak_entry_t *old_entries = weak_table->weak_entries;
weak_entry_t *new_entries = (weak_entry_t *)
calloc(new_size, sizeof(weak_entry_t));
weak_table->mask = new_size - 1;
weak_table->weak_entries = new_entries;
weak_table->max_hash_displacement = 0;
weak_table->num_entries = 0; // restored by weak_entry_insert below
if (old_entries) {
weak_entry_t *entry;
weak_entry_t *end = old_entries + old_size;
for (entry = old_entries; entry < end; entry++) {
if (entry->referent) {
weak_entry_insert(weak_table, entry);
}
}
free(old_entries);
}
}
从一开始old_size ? old_size*2 : 64
为0,所以开辟出了64个大小为sizeof(weak_entry_t)
空间,如果里面的个数超过64的3/4了,就开始再次扩容,并把之前的表结构再一个一个插入进去,weak_entry_insert(weak_table, entry);
。
static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
{
weak_entry_t *weak_entries = weak_table->weak_entries;
assert(weak_entries != nil);
size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
size_t index = begin;
size_t hash_displacement = 0;
while (weak_entries[index].referent != nil) {
index = (index+1) & weak_table->mask;
if (index == begin) bad_weak_table(weak_entries);
hash_displacement++;
}
weak_entries[index] = *new_entry;
weak_table->num_entries++;
if (hash_displacement > weak_table->max_hash_displacement) {
weak_table->max_hash_displacement = hash_displacement;
}
}
hash_pointer
是根据对象的地址做一次hash
运算,用的是ptr_hash
方法,再跟总共的空间做与运行,也就是跟63做与运算(如果再次扩容就不是63了)。如果当前位置有值了,就再通过上面算法再换一个,接下来就是简单赋值了。
static weak_entry_t * weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
assert(referent);
weak_entry_t *weak_entries = weak_table->weak_entries;
if (!weak_entries) return nil;
size_t begin = hash_pointer(referent) & weak_table->mask;
size_t index = begin;
size_t hash_displacement = 0;
while (weak_table->weak_entries[index].referent != referent) {
index = (index+1) & weak_table->mask;
if (index == begin) bad_weak_table(weak_table->weak_entries);
hash_displacement++;
if (hash_displacement > weak_table->max_hash_displacement) {
return nil;
}
}
return &weak_table->weak_entries[index];
}
通过一个对象获取对应的weak_entry_t
,这里跟插入的差不多,都是根据地址来进行操作。
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{
if (! entry->out_of_line()) {
// Try to insert inline.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == nil) {
entry->inline_referrers[i] = new_referrer;
return;
}
}
// Couldn't insert inline. Allocate out of line.
weak_referrer_t *new_referrers = (weak_referrer_t *)
calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
// This constructed table is invalid, but grow_refs_and_insert
// will fix it and rehash it.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
new_referrers[i] = entry->inline_referrers[I];
}
entry->referrers = new_referrers;
entry->num_refs = WEAK_INLINE_COUNT;
entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;
entry->mask = WEAK_INLINE_COUNT-1;
entry->max_hash_displacement = 0;
}
assert(entry->out_of_line());
if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
return grow_refs_and_insert(entry, new_referrer);
}
size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
size_t index = begin;
size_t hash_displacement = 0;
while (entry->referrers[index] != nil) {
hash_displacement++;
index = (index+1) & entry->mask;
if (index == begin) bad_weak_table(entry);
}
if (hash_displacement > entry->max_hash_displacement) {
entry->max_hash_displacement = hash_displacement;
}
weak_referrer_t &ref = entry->referrers[index];
ref = new_referrer;
entry->num_refs++;
}
从上面可知,有2种模式,如果有小于等于4个weak
的话,就用inline_referrers
本身,就如最开始for
循环,如果大于4个的话,就跟weak
表结构一样了,用referrers
进行存储了,如果里面个数大于3/4就自动扩容一倍,它用的是w_hash_pointer
方法对地址进行hash
取值,其实跟hash_pointer
一样,调用的都是同一个方法ptr_hash
。
void weak_unregister_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id)
{
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
weak_entry_t *entry;
if (!referent) return;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
remove_referrer(entry, referrer);
bool empty = true;
if (entry->out_of_line() && entry->num_refs != 0) {
empty = false;
}
else {
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i]) {
empty = false;
break;
}
}
}
if (empty) {
weak_entry_remove(weak_table, entry);
}
}
}
static void remove_referrer(weak_entry_t *entry, objc_object **old_referrer)
{
if (! entry->out_of_line()) {
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == old_referrer) {
entry->inline_referrers[i] = nil;
return;
}
}
...
}
size_t begin = w_hash_pointer(old_referrer) & (entry->mask);
size_t index = begin;
size_t hash_displacement = 0;
....
entry->referrers[index] = nil;
entry->num_refs--;
}
移除weak
引用,主要就是把相应位置的指针置为空,entry->inline_referrers[i] = nil;
、entry->referrers[index] = nil;
。如果没有引用了,就直接调用weak_entry_remove
方法把weak
表里面的相应引用给置为空。
static void weak_entry_remove(weak_table_t *weak_table, weak_entry_t *entry)
{
// remove entry
if (entry->out_of_line()) free(entry->referrers);
bzero(entry, sizeof(*entry));
weak_table->num_entries--;
weak_compact_maybe(weak_table);
}
当一个对象销毁的时候,如果有弱引用,会调用weak_clear_no_lock
方法进行清除,最后也会调用weak_entry_remove
。
inline void objc_object::clearDeallocating()
{
if (slowpath(!isa.nonpointer)) {
// Slow path for raw pointer isa.
sidetable_clearDeallocating();
}else if (slowpath(isa.weakly_referenced || isa.has_sidetable_rc)) {
// Slow path for non-pointer isa with weak refs and/or side table data.
clearDeallocating_slow();
}
}
objc_object::clearDeallocating_slow()
{
assert(isa.nonpointer && (isa.weakly_referenced || isa.has_sidetable_rc));
SideTable& table = SideTables()[this];
table.lock();
if (isa.weakly_referenced) {
weak_clear_no_lock(&table.weak_table, (id)this);
}
if (isa.has_sidetable_rc) {
table.refcnts.erase(this);
}
table.unlock();
}
void weak_clear_no_lock(weak_table_t *weak_table, id referent_id)
{
objc_object *referent = (objc_object *)referent_id;
weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
if (entry == nil) return;
weak_referrer_t *referrers;
size_t count;
if (entry->out_of_line()) {
referrers = entry->referrers;
count = TABLE_SIZE(entry);
}else {
referrers = entry->inline_referrers;
count = WEAK_INLINE_COUNT;
}
for (size_t i = 0; i < count; ++i) {
objc_object **referrer = referrers[I];
if (referrer) {
if (*referrer == referent) {
*referrer = nil;
}
...
}
}
weak_entry_remove(weak_table, entry);
}
这里的逻辑跟之前相似,看上面的即可。weak
的介绍到此为止,详细的可以自己运行别人编译好的runtime
自己进行调式。