jieba分词的安装与使用

Jieba是一个中文分词组件,可用于中文句子/词性分割、词性标注、未登录词识别,支持用户词典等功能。该组件的分词精度达到了97%以上。

Anaconda创建环境:

//下面是创建python=3.6版本的环境,取名叫py36

conda create -n py36 python=3.6 

Windows中使用conda activate激活环境

在Python里安装Jieba中文分词组件

1)下载Jieba

官网地址:http://pypi.python.org/pypi/jieba/

个人地址:http://download.csdn.net/detail/sanqima/9470715

2)将其解压到D:\TDDownload,如图(1)所示:

点击电脑桌面的左下角的【开始】—》运行 —》输入: cmd —》切换到Jieba所在的目录,比如,D:\TDDownload\Jieba,依次使用如下命令:

C:\Users\Administrator>D:

D:\>cd D:\TDDownload\jieba-0.35

D:\TDDownload\jieba-0.35>python setup.py install

01 Jieba的三种分词模式

Jieba提供了三种分词模式:

精确模式:试图将句子最精确地切开,适合文本分析。

全模式:把句子中所有可以成词的词语都扫描出来,速度非常快,但是不能解决歧义。

搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

下面是使用这三种模式的对比。

import jieba

sent = '中文分词是文本处理不可或缺的一步!'

seg_list = jieba.cut(sent, cut_all=True)

print('全模式:', '/ '.join(seg_list))

seg_list = jieba.cut(sent, cut_all=False)

print('精确模式:', '/ '.join(seg_list))

seg_list = jieba.cut(sent)

print('默认精确模式:', '/ '.join(seg_list))

seg_list = jieba.cut_for_search(sent)

print('搜索引擎模式', '/ '.join(seg_list))

运行结果如下:

全模式:

中文/分词/是/文本/文本处理/本处/处理/不可/不可或缺/或缺/的/一步//

精确模式:

中文/分词/是/文本处理/不可或缺/的/一步/!

默认精确模式:

中文/分词/是/文本处理/不可或缺/的/一步/!

搜索引擎模式:

中文/分词/是/文本/本处/处理/文本处理/不可/或缺/不可或缺/的/一步/!

可以看到,全模式和搜索引擎模式下,Jieba将会把分词的所有可能都打印出来。一般直接使用精确模式即可,但是在某些模糊匹配场景下,使用全模式或搜索引擎模式更适合。

https://blog.csdn.net/zw0Pi8G5C1x/article/details/88706653

https://blog.csdn.net/sanqima/article/details/50965439

https://blog.csdn.net/sinat_37676560/article/details/90794659

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345