RAG 学习笔记(五)

基于博文 Advanced RAG Techniques: an Illustrated Overview 的学习和练习的记录。

中文内容可以查看博主@宝玉的译文 高级 RAG 技术:图解概览 [译]

系列笔记:
RAG 学习笔记(一)
RAG 学习笔记(二)
RAG 学习笔记(三)
RAG 学习笔记(四)

重排序与过滤

在获取检索结果后,可以根据通过过滤、重新排序或者其他的转换方法来进行检索结果的优化。

这是将检索结果提供给 LLM 的最后一步。

LlamaIndex 有多种后处理器(Postprocessor)可以进行过滤和重排序:

动手练习Rerank LangChain 实现: Cohere Rerank 和 Cross-encoder Rerank


下面的内容是更为复杂的 RAG 技术,涉及 Agent 相关知识,包括 LLM 推理的一些复杂逻辑。

查询转换

查询转换通过使用LLM作为推理引擎对用户输入进行修改,从而提高检索质量。

方法一:查询拆分

查询转换原理
  1. 如果查询语句复杂,可以使用 LLM 分解为多个子查询
  2. 将多个子查询并行执行,将检索到的结果合并,提供给 LLM

比如:

  • 原始查询语句:What framework has more stars on Github, Langchain or LlamaIndex?
  • 分解后的子查询:
    • How many stars does Langchain have on Github?
    • How many stars does Llamaindex have on Github?

实例

  1. LangChain 实现:Multi Query Retriever
  2. LlamaIndex 实现:Sub Question Query Engine

方法二:回退(step-back)法

  1. 将原始查询语句通过 LLM 生成更加通用的查询,以供检索出更通用或更高级别的上下文
  2. 使用原始查询进行检索
  3. 将两个查询的检索结果合并,提供给 LLM

比如:

  • 原始查询:Could the members of The Police perform lawful arrests?
  • 更加通用的查询:What can the members of The Police do?

实例

LangChain 实现:LangChain cookbook: Step-Back Prompting

方法三:查询重写

使用 LLM 将原始查询重新表述(reformulate)

实例

  1. LangChain 实现:LangChain Cookbook: Rewrite-Retrieve-Read
  2. LlamaIndex 实现:Query Rewriting Retriever Pack

理解回退(step-back)法和查询重写法,请看:Query rewrite 和 Step-back Prompting 对比学习

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容