es7.x—查询篇

文章来源

  1. 查询基本语法结构
    1.1 基础结构
    1.2 query字节
    1.3 aggs子句
    1.4 sort子句
    1.5 ES查询分页
    1.6 _source

通过ES查询表达式(Query DSL),可以实现复杂的查询功能,ES查询表达式主要由JSON格式编写,可以灵活的组合各种查询语句。

1. 查询基本语法结构

1.1 基础结构

GET /{索引名}/_search
{
    "from" : 0,  // 返回搜索结果的开始位置
    "size" : 10, // 分页大小,一次返回多少数据
    "_source" :[ ...需要返回的字段数组... ],
    "query" : { ...query子句... },
    "aggs" : { ..aggs子句..  },
    "sort" : { ..sort子句..  }
}

{索引名},支持支持一次搜索多个索引,多个索引使用逗号分隔,例子:

GET /order1,order2/_search

按前缀匹配索引名:搜索索引名以order开头的索引。

GET /order*/_search

当我们执行查询语句,返回的JSON数据格式如下

{
  "took" : 5, // 查询消耗时间,单位毫秒 
  "timed_out" : false, // 查询是否超时
  "_shards" : { // 本次查询参与的ES分片信息,查询中参与分片的总数,以及这些分片成功了多少个失败了多少个
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : { // hits字段包含我们搜索匹配的结果
    "total" : { // 匹配到的文档总数
      "value" : 1, // 找到1个文档
      "relation" : "eq"
    },
    "max_score" : 1.0, // 匹配到的最大分值
    "hits" : [ 
         // 这里就是我们具体的搜索结果,是一个JSON文档数组
    ]
  }
}

1.2 query字节

query子句主要用来编写类似SQL的Where语句,支持布尔查询(and/or)、IN、全文搜索、模糊匹配、范围查询(大于小于)。

es(1)—基础Rest API命令
es(2)—复杂的多条件查询(bool查询与constant_score查询)
es(4)—查询条件match和term
es(5)—terms的用法
es7.x(6)—minimum_should_match最低匹配度
es7.x(7)—短语搜索(match_phrase)
es7.x(8)— 多字段匹配检索 multi_match query
es7.x(9)— match query的参数

1.3 aggs子句

aggs子句,主要用来编写统计分析语句,类似SQL的group by语句
es7.x(10)aggs聚合查询

1.4 sort子句

sort子句,用来设置排序条件,类似SQL的order by语句。

ES的默认排序时根据相关性分数排序,如果我们想根据查询结果中的指定字段排序,需要使用sort关键字处理。

语法:

GET /{索引名}/_search
{
  "query": {
    ...查询条件....
  },
  "sort": [
    {
      "{Field1}": { // 排序字段1
        "order": "desc" // 排序方向,asc或者desc, 升序和降序
      }
    },
    {
      "{Field2}": { // 排序字段2
        "order": "desc" // 排序方向,asc或者desc, 升序和降序
      }
    }
    ....多个排序字段.....
  ]
}

sort子句支持多个字段排序,类似SQL的order by。

例子:

GET /order_v2/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "order_no": {
        "order": "desc"
      }
    },
    {
      "shop_id": {
        "order": "asc"
      }
    }
  ]
}

查询order_v2索引的所有结果,结果根据order_no字段降序,order_no相等的时候,再根据shop_id字段升序排序。

1.5 ES查询分页

ES查询的分页主要通过from和size参数设置,类似MYSQL 的limit和offset语句。

GET /order_v2/_search
{
  "from": 0,
  "size": 20, 
  "query": {
    "match_all": {}
  }
}

1.6 _source

_source用于设置查询结果返回什么字段,类似select语句后面指定字段。

GET /order_v2/_search
{
  "_source": ["order_no","shop_id"], 
  "query": {
    "match_all": {}
  }
}

仅返回,order_no和shop_id字段。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容