Pointer Networks

Pointer Networks

Oriol Vinyals, Meire Fortunato, Navdeep Jaitly
Google, Berkeley
NIPS 2015

Introduction

The key motivation and contribution of this work is a pointer network framework which can solve discrete mapping problems with different dictionary size across instances.

Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention.

The method is to

use attention as a pointer to select a member of the input sequence as the output.

This work provides a new approach to solve discrete optimization problems with sequential model.

Problem Setup

This paper focuses on solving a specific type of seqence-to-sequence task in a supervised learning approach. In the training data, the inputs are planar point sets \mathcal{P} = \{ P_1, \cdots , P_n \} with n elements each, where P_i = (x_i, y_i) are the cartesian coordinates of the points. The training instances are sampled from a uniform distribution in [0, 1] \times [0, 1]. The outputs \mathcal{C}^{\mathcal{P}} = \{ C_1, \cdots , C_{m(\mathcal{P})} \} are sequences of point indices representing the solution associated to the point set \mathcal{P}.

Models

Sequence-to-Sequence Model

This model learns the parameters \theta of an encoder-decoder to maximize the conditional probabilitity of the output sequence on the training samples:
\theta^* = \mathop{\arg\max}_{\theta} \sum_{\mathcal{P}, \mathcal{C}^{\mathcal{P}}} \log{p(\mathcal{C}^{\mathcal{P}} | \mathcal{P}; \theta)} ,
where
p(\mathcal{C}^{\mathcal{P}} | \mathcal{P}; \theta) = \prod_{i = 1}^{m(\mathcal{P})} p_\theta (C_i | C_1, \cdots , C_{i - 1}, \mathcal{P}; \theta) .
Note that this model makes no statistical independence assumptions, thus it is not a Markov chain.

During inference, as the number of possible suquences grows exponentially with the sequence length, beam search is utilized to find the best possible sequence.

Notice that in the standard sequence-to-sequence model, the output dictionary size for all symbols C_i is fixed and equal to n, which means that the model trained for a particular sequence length can not generalize to other sequences with different length.

Content Based Input Attention

The vanilla sequence-to-sequence model only uses the final state of the encoder to represent the whole input sequence, which constrains the amount of information and computation that can flow through to the decoder. The attention model augments the decoder RNNs with an attention module over the encoder states to provide further information:
u_j^i = v^T \tanh{W_1 e_j + W_2 d_i} ,
a^i = softmax(u^i) ,
d'_i = \sum_{i = 1}^n = a_j^i e_j ,
where e_j and d_i are encoder state and decoder state respectively. d'_i and d_i are concatenated and used as the hidden state for prediction and input to the next time step.

Pointer Network

The pointer network simplifies the attention mechanism by normalizing the vector u^i to be an output distribution over the dictionary of inputs, which guarantees that the dictionary size is always consistent with the input dictionary size:
p(C_i | C_1, \cdots , C_{i - 1}, \mathcal{P}) = softmax(u^i) .

Experiments

The paper experiments on three different problems, i.e. convex hull, Delaunay triangulation and TSP, all relating to finding a solution with respect to a discrete input sequence.

(The output is actually a cycle or set in these problems, which means that any point in the solution can be the start point in the decoder sequence. RNN actually can't reflect this property, and the authors had to artificially define a start point of the output sequence in the experimental setup. )

Convex Hull

  • Instance representation: The elements C_i are indices between 1 and n corresponding to positions in the sequence P. To represent the output as a sequence, start from the point with the lowest index, and go counter-clockwise.

Delaunay Triangulation

  • Instance representation: The outputs \mathcal{C}^{\mathcal{P}} = \{ C_1, \cdots , C_{m(\mathcal{P})} \} are the corresponding sequences representing the triangulation of the point set \mathcal{P}. Each C_i is a triple of integers from 1 to n corresponding to the position of triangle vertices in \mathcal{P}.

TSP

  • Instance representation: For consistency, in the training dataset, always start in the first city without loss of generality.

Generally speaking, the pointer network can work across different sequence length, and perform relatively well for small instance size. However, as it uses 1M training instances for each task, and all of them are uniformly sampled in an unit square, I doubt that it is fitting instead of actually learning.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,302评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,563评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,433评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,628评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,467评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,354评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,777评论 3 387
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,419评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,725评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,768评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,543评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,387评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,794评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,032评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,305评论 1 252
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,741评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,946评论 2 336

推荐阅读更多精彩内容