ADS仿真入门1 -- 结合史密斯圆图对特性阻抗的tuning

作为一名硬件工程师,如果板子打出来高速差分特性阻抗不满足要求怎么办?在不该PCB的情况下如何做临时tuning?


Smith圆图

首先,我们需要将几个公式了然于心:

阻抗基础

平行板电容量

C=εoA/h

A表示平行板面积,h表示平板间距。

圆形导体局部自感

L=5d{ln(2d/r)-3/4}

d为长度,r为半径

A表示平行板面积,h表示平板间距。

频域二阶阻抗公式

Z(w)=R+i(wL-1/wC),w=2πf 频域二阶

w指角频率,i为相位复数,f为频率。

微带线(microstrip)特性阻抗

Z={87/[sqrt(Er+1.41)]}*ln[5.98H/(0.8W+T)]

W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB板材质的介电常数(dielectric constant)

带状线(stripline)特性阻抗

Z=[60/sqrt(Er)]*ln{4H/[0.67π(0.8W+T)]}

即与介电常数、铜箔厚度成反比;与介质厚度(与参考层的距离)成正比

综合上面3个公式,可领悟出,铜箔越厚,L越小,Z(w)=R+i(wL-1/wC),故特性阻抗变大;与参考层距离越大,C越大,Z(w)=R+i(wL-1/wC),故特性阻抗越小。

再实际一点,就是信号遇到容性阻抗时,特性阻抗会降低;遇到感性阻抗时,特性阻抗会升高。

反射理论

S11=Vr/Vi=(Z2-Z1 )/(Z2+Z1)

S12=Vt/Vi=2*Z2/(Z2+Z1)          (2)

Vi为反射前端信号电压,Vr为反射电压,Vt为反射后端信号电压,Z1为反射前端阻抗,Z2为反射后端阻抗,Vo为驱动端电压。Vi为传输线电压。

实际一点,就是如果后端阻抗大于输入阻抗,就是形成正反射,信号电压升高,即过冲;就是如果后端阻抗小于输入阻抗,就是形成负反射,信号电压降低,即下冲。我们经常在发送端加22~33Ω匹配串阻,就是因为CMOS输出阻抗很低,只有20~40Ω,需要进行阻抗匹配。

说了那么多,OK,开始干活:

ADS建一个简单的前仿真线路

ADS S parameter schematic

主要是因为兴趣玩玩,所以在线路上胡乱串联并联了LC,看看能不能调,正常情况下高速信号上肯定只有AC coup,所以结果会不怎么好看,损耗太严重。

扫描频率设置为1GHz~5GHz,设置差分S参数公式,提取差分回损SDD11,差分插损SDD12,TDR阻抗,史密斯圆图结果。

从Smith圆图上增加2个mark点,可以看出在1GHz时,阻抗约为超出100较多;在5GHz,阻抗低于100较多,且实部阻抗一直不在Zo圆圈附近,在实部和虚部高低之间一直来回震荡。

打开ADS tuning,调节串联LC和并联C的值,发现串联C的值影响几乎忽略不计,故此处不写,串阻R也是,发现对信号的损耗太大。

串联L的调试

增大串联L从0.05nH到2.04nH,从史密斯圆图上发现1G~5GHz阻抗几乎在同一个实部圆圈上,由于阻抗匹配较好,所以SDD11回损几乎保持不变,TDR曲线几乎没变,但插损损失变得更加严重。

增大L到2.04nH

继续增大L到5.025nH,从史密斯圆图上看,较低频的1GHz阻抗从0.05nH时的实部1.457降到0.503,阻抗变小了很多;5GHz反而相反。插损更加严重,接收端能接受到的功率在2GHz下几乎无法满足了。

L继续增大到5nH

总结得出,串联L对特性阻抗的调试没有线性规律,还是取决于板子上信号频率,且L越大,插损越大,不宜采取此方法。

并联C的调试

将并联电容从0.1nF减小为0.001nF,发现1GHz阻抗实部从1.45降为1.234,5GHz实部从0.68减为0.676,史密斯圆圈变小,越来越靠近Zo,所以回损插损整体都变小。

减小并联C到0.001nF

将并联电容从0.001nF增到为10nF,发现1GHz阻抗实部从1.234升为1.442,5GHz实部从0.676降为0.606,史密斯圆圈变大,所以回损插损整体都变大,由于5GHz阻抗变化非线性,故并联电容无法线性调节阻抗。

并联C增大到10nF

将并联电容从10nF增到为100nF,发现1GHz阻抗实部虚部均几乎没有变化,不仅如此其他参数也没有变化,故可见并联C并不能一直影响特性阻抗,它有一个范围。

将并联C增大到100nF


综上,搞了半天,高速差分阻抗调试必须搭配频率,没有一定的规律可寻,而结合最开始说的公式,线宽线距过孔参考层都会影响到阻抗,所以还是安心在gerber前把阻抗控制好,注意review stackup和layout,否则万劫不复准备走人啊~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容