深度强化学习-Policy Gradient基本实现

在之前的几篇文章中,我们介绍了基于价值Value的强化学习算法Deep Q Network。有关DQN算法以及各种改进算法的原理和实现,可以参考之前的文章:

实战深度强化学习DQN-理论和实践:https://www.jianshu.com/p/10930c371cac
DQN三大改进(一)-Double DQN:https://www.jianshu.com/p/fae51b5fe000
DQN三大改进(二)-Prioritised replay:https://www.jianshu.com/p/db14fdc67d2c
DQN三大改进(三)-Dueling Network:https://www.jianshu.com/p/b421c85796a2

基于值的强化学习算法的基本思想是根据当前的状态,计算采取每个动作的价值,然后根据价值贪心的选择动作。如果我们省略中间的步骤,即直接根据当前的状态来选择动作,也就引出了强化学习中的另一种很重要的算法,即策略梯度(Policy Gradient)。这篇文章,我们就来介绍这种算法的最基础的版本以及其简单的实现。

本篇文章的大部分内容均学习自莫烦老师的强化学习课程,大家可以在b站上找到相关的视频:https://www.bilibili.com/video/av16921335/#page=22

1、什么是 Policy Gradients

其实在引言部分我们已经介绍了策略梯度的基本思想,就是直接根据状态输出动作或者动作的概率。那么怎么输出呢,最简单的就是使用神经网络啦!
我们使用神经网络输入当前的状态,网络就可以输出我们在这个状态下采取每个动作的概率,那么网络应该如何训练来实现最终的收敛呢?
我们之前在训练神经网络时,使用最多的方法就是反向传播算法,我们需要一个误差函数,通过梯度下降来使我们的损失最小。但对于强化学习来说,我们不知道动作的正确与否,只能通过奖励值来判断这个动作的相对好坏。基于上面的想法,我们有个非常简单的想法:

如果一个动作得到的reward多,那么我们就使其出现的概率增加,如果一个动作得到的reward少,我们就使其出现的概率减小。

根据这个思想,我们构造如下的损失函数:loss= -log(prob)*vt

我们简单用白话介绍一下上面这个损失函数的合理性,那么至于从数学角度上为什么要使用上面的损失函数,可以参考:Why we consider log likelihood instead of Likelihood in Gaussian Distribution

上式中log(prob)表示在状态 s 对所选动作 a 的吃惊度, 如果概率越小, 反向的log(prob) 反而越大. 而vt代表的是当前状态s下采取动作a所能得到的奖励,这是当前的奖励和未来奖励的贴现值的求和。也就是说,我们的策略梯度算法必须要完成一个完整的eposide才可以进行参数更新,而不是像值方法那样,每一个(s,a,r,s')都可以进行参数更新。如果在prob很小的情况下, 得到了一个大的Reward, 也就是大的vt, 那么-log(prob)*vt就更大, 表示更吃惊, (我选了一个不常选的动作, 却发现原来它能得到了一个好的 reward, 那我就得对我这次的参数进行一个大幅修改)。

这就是 -log(prob)*vt的物理意义啦.Policy Gradient的核心思想是更新参数时有两个考虑:如果这个回合选择某一动作,下一回合选择该动作的概率大一些,然后再看奖惩值,如果奖惩是正的,那么会放大这个动作的概率,如果奖惩是负的,就会减小该动作的概率。

策略梯度的过程如下图所示:

我们在介绍代码实战之前,最后在强调Policy Gradient的一些细节:

  1. 算法输出的是动作的概率,而不是Q值。
  2. 损失函数的形式为:loss= -log(prob)*vt
  3. 需要一次完整的episode才可以进行参数的更新

2、Policy Gradient算法实现

我们通过Policy Gradient算法来实现让钟摆倒立的过程。

本文的代码地址在:https://github.com/princewen/tensorflow_practice/tree/master/Basic-Policy-Network

本文的代码思路完全按照policy gradient的过程展开。

定义参数
首先,我们定义了一些模型的参数:

self.ep_obs,self.ep_as,self.ep_rs分别存储了当前episode的状态,动作和奖励。

self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay

self.ep_obs,self.ep_as,self.ep_rs = [],[],[]

定义模型输入
模型的输入包括三部分,分别是观察值,动作和奖励值。

with tf.name_scope('inputs'):
    self.tf_obs = tf.placeholder(tf.float32,[None,self.n_features],name='observation')
    self.tf_acts = tf.placeholder(tf.int32,[None,],name='actions_num')
    self.tf_vt = tf.placeholder(tf.float32,[None,],name='actions_value')

构建模型
我们的模型定义了两层的神经网络,网络的输入是每次的观测值,而输出是该状态下采取每个动作的概率,这些概率在最后会经过一个softmax处理

layer = tf.layers.dense(
    inputs = self.tf_obs,
    units = 10,
    activation= tf.nn.tanh,
    kernel_initializer=tf.random_normal_initializer(mean=0,stddev=0.3),
    bias_initializer= tf.constant_initializer(0.1),
    name='fc1'
)

all_act = tf.layers.dense(
    inputs = layer,
    units = self.n_actions,
    activation = None,
    kernel_initializer=tf.random_normal_initializer(mean=0,stddev=0.3),
    bias_initializer = tf.constant_initializer(0.1),
    name='fc2'
)

self.all_act_prob = tf.nn.softmax(all_act,name='act_prob')

模型的损失
我们之前介绍过了,模型的损失函数计算公式为:loss= -log(prob)*vt,我们可以直接使用tf.nn.sparse_softmax_cross_entropy_with_logits 来计算前面一部分,即-log(prob),不过为了更清楚的显示我们的计算过程,我们使用了如下的方式:

with tf.name_scope('loss'):
    #neg_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.all_act_prob,labels =self.tf_acts)

    neg_log_prob = tf.reduce_sum(-tf.log(self.all_act_prob) * tf.one_hot(indices=self.tf_acts,depth=self.n_actions),axis=1)
    loss = tf.reduce_mean(neg_log_prob * self.tf_vt)

而我们选择AdamOptimizer优化器进行参数的更新:

with tf.name_scope('train'):
    self.train_op = tf.train.AdamOptimizer(self.lr).minimize(loss)

动作选择
我们这里动作的选择不再根据贪心的策略来选择了,而是根据输出动作概率的softmax值:

def choose_action(self,observation):
    prob_weights = self.sess.run(self.all_act_prob,feed_dict={self.tf_obs:observation[np.newaxis,:]})
    action = np.random.choice(range(prob_weights.shape[1]),p=prob_weights.ravel())
    return action

存储经验
之前说过,policy gradient是在一个完整的episode结束后才开始训练的,因此,在一个episode结束前,我们要存储这个episode所有的经验,即状态,动作和奖励。

def store_transition(self,s,a,r):
    self.ep_obs.append(s)
    self.ep_as.append(a)
    self.ep_rs.append(r)

计算奖励的贴现值
我们之前存储的奖励是当前状态s采取动作a获得的即时奖励,而当前状态s采取动作a所获得的真实奖励应该是即时奖励加上未来直到episode结束的奖励贴现和。

def _discount_and_norm_rewards(self):
    discounted_ep_rs = np.zeros_like(self.ep_rs)
    running_add = 0
    # reserved 返回的是列表的反序,这样就得到了贴现求和值。
    for t in reversed(range(0,len(self.ep_rs))):
        running_add = running_add * self.gamma + self.ep_rs[t]
        discounted_ep_rs[t] = running_add

    discounted_ep_rs -= np.mean(discounted_ep_rs)
    discounted_ep_rs /= np.std(discounted_ep_rs)
    return discounted_ep_rs

模型训练
在定义好上面所有的部件之后,我们就可以编写模型训练函数了,这里需要注意的是,我们喂给模型的并不是我们存储的奖励值,而是在经过上一步计算的奖励贴现和。另外,我们需要在每一次训练之后清空我们的经验池。

def learn(self):
    discounted_ep_rs_norm = self._discount_and_norm_rewards()

    self.sess.run(self.train_op,feed_dict={
        self.tf_obs:np.vstack(self.ep_obs),
        self.tf_acts:np.array(self.ep_as),
        self.tf_vt:discounted_ep_rs_norm,
    })

    self.ep_obs,self.ep_as,self.ep_rs = [],[],[]
    return discounted_ep_rs_norm

好了,模型相关的代码我们就介绍完了,如何调用这个模型的代码相信大家一看便明白,我们就不再介绍啦。

有关强化学习中policy gradient的更多的改进我也会进一步学习和总结,希望大家持续关注!

参考资料

1 https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/4-4-gym/
2 https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
3 https://zhuanlan.zhihu.com/p/21725498

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容