1.业务术语
1)用户
用户以设备为判断标准,在移动统计中,每个独立设备认为是一个独立用户。Android 系统根据 IMEI 号,IOS 系统根据 OpenUDID 来标识一个独立用户,每部手机一个用户。
2)新增用户
首次联网使用应用的用户。如果一个用户首次打开某 APP,那这个用户定义为新增用 户;卸载再安装的设备,不会被算作一次新增。新增用户包括日新增用户、周新增用户、月新增用户。
3)活跃用户
打开应用的用户即为活跃用户,不考虑用户的使用情况。每天一台设备打开多次会被计为一个活跃用户。
4)周(月)活跃用户
某个自然周(月)内启动过应用的用户,该周(月)内的多次启动只记一个活跃用户。
5)月活跃率
月活跃用户与截止到该月累计的用户总和之间的比例。
6)沉默用户
用户仅在安装当天(次日)启动一次,后续时间无再启动行为。该指标可以反映新增用 户质量和用户与 APP 的匹配程度。
7)版本分布
不同版本的周内各天新增用户数,活跃用户数和启动次数。利于判断 APP 各个版本之 间的优劣和用户行为习惯。
8)本周回流用户
上周未启动过应用,本周启动了应用的用户。
9)连续 n 周活跃用户
连续 n 周,每周至少启动一次。
10)忠诚用户
连续活跃 5 周以上的用户
11)连续活跃用户
连续 2 周及以上活跃的用户
12)近期流失用户
连续 n(2<= n <= 4)周没有启动应用的用户。(第 n+1 周没有启动过)
13)留存用户
某段时间内的新增用户,经过一段时间后,仍然使用应用的被认作是留存用户;这部分 用户占当时新增用户的比例即是留存率。
例如,5 月份新增用户 200,这 200 人在 6 月份启动过应用的有 100 人,7 月份启动过 应用的有 80 人,8 月份启动过应用的有 50 人;则 5 月份新增用户一个月后的留存率是 50%, 二个月后的留存率是 40%,三个月后的留存率是 25%。
14)用户新鲜度
每天启动应用的新老用户比例,即新增用户数占活跃用户数的比例。
15)单次使用时长
每次启动使用的时间长度。
16)日使用时长
累计一天内的使用时间长度。
17)启动次数计算标准
IOS 平台应用退到后台就算一次独立的启动;Android 平台我们规定,两次启动之间的 间隔小于 30 秒,被计算一次启动。用户在使用过程中,若因收发短信或接电话等退出应用 30 秒又再次返回应用中,那这两次行为应该是延续而非独立的,所以可以被算作一次使用 行为,即一次启动。业内大多使用 30 秒这个标准,但用户还是可以自定义此时间间隔。
2.系统函数
2.1 collect_set 函数
1)创建原数据表
hive (gmall)> drop table if exists stud;
create table stud (name string, area string, course string, score int);
2)向原数据表中插入数据
hive (gmall) > INSERT INTO TABLE stud
VALUES
('zhang3', 'bj', 'math', 88);
INSERT INTO TABLE stud
VALUES
('li4', 'bj', 'math', 99);
INSERT INTO TABLE stud
VALUES
('wang5', 'sh', 'chinese', 92);
INSERT INTO TABLE stud
VALUES
('zhao6', 'sh', 'chinese', 54);
INSERT INTO TABLE stud
VALUES
('tian7', 'bj', 'chinese', 91);
3)查询表中数据
hive (gmall)> select * from stud;
输出:
stud.name stud.area stud.course stud.score
zhang3 bj math 88
li4 bj math 99
wang5 sh chinese 92
zhao6 sh chinese 54
tian7 bj chinese 91
4)把同一分组的不同行的数据聚合成一个集合
hive (gmall) > SELECT
course,
collect_set (area),
avg(score)
FROM
stud
GROUP BY
course;
输出:
chinese ["sh","bj"] 79.0
math ["bj"] 93.5
5) 用下标可以取某一个
hive (gmall)> select course, collect_set(area)[0],
avg(score) from stud group by course;
chinese sh 79.0 math bj 93.5
2.2 nvl函数
1)基本语法
NVL(表达式 1,表达式 2)
如果表达式 1 为空值,NVL 返回值为表达式 2 的值,否则返回表达式 1 的值。 该函 数的目的是把一个空值(null)转换成一个实际的值。其表达式的值可以是数字型、字符型 和日期型。但是表达式 1 和表达式 2 的数据类型必须为同一个类型。
2.3 日期处理函数
1)date_format 函数(根据格式整理日期)
hive (gmall)> select date_format('2020-03-10','yyyy-MM');
2020-03
2)date_add 函数(加减日期)
hive (gmall)> select date_add('2020-03-10',-1);
2020-03-09
hive (gmall)> select date_add('2020-03-10',1);
2020-03-11
3)next_day 函数
(1)取当前天的下一个周一
hive (gmall)> select next_day('2020-03-12','MO');
2020-03-16
说明:星期一到星期日的英文(Monday,Tuesday、Wednesday、Thursday、Friday、Saturday、Sunday)
(2)取当前周的周一
hive (gmall)> select date_add(next_day('2020-03-12','MO'),-7);
2020-03-11
4)last_day 函数(求当月最后一天日期)
hive (gmall)> select last_day('2020-03-10');
2020-03-31
3.DWS 层(用户行为)
3.1 每日设备行为
每日设备行为,主要按照设备 id 统计。
1)建表语句
hive (gmall) > DROP TABLE
IF EXISTS dws_uv_detail_daycount;
CREATE external TABLE dws_uv_detail_daycount (
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`login_count` BIGINT COMMENT '活跃次数'
) partitioned BY (dt string) stored AS parquet location '/warehouse/gmall/dws/dws_uv_detail_daycount';
2)数据装载
hive (gmall) >
INSERT overwrite TABLE dws_uv_detail_daycount PARTITION (dt = '2020-03-10') SELECT
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws(
'|',
collect_set (version_code)
) version_code,
concat_ws(
'|',
collect_set (version_name)
) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws(
'|',
collect_set (sdk_version)
) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws(
'|',
collect_set (height_width)
) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
count(*) login_count
FROM
dwd_start_log
WHERE
dt = '2020-03-10'
GROUP BY
mid_id;
3)查询加载结果
hive (gmall)>
select * from dws_uv_detail_daycount
where dt='2020-03-10';
4.DWS层(业务)
DWS 层的宽表字段,是站在不同维度的视角去看事实表。重点关注事实表的度量值。
4.1 每日会员行为
1)建表语句
hive (gmall) > DROP TABLE
IF EXISTS dws_user_action_daycount;
CREATE external TABLE dws_user_action_daycount (
user_id string COMMENT '用户 id',
login_count BIGINT COMMENT '登录次数',
cart_count BIGINT COMMENT '加入购物车次数',
cart_amount DOUBLE COMMENT '加入购物车金额',
order_count BIGINT COMMENT '下单次数',
order_amount DECIMAL (16, 2) COMMENT '下单金额',
payment_count BIGINT COMMENT '支付次数',
payment_amount DECIMAL (16, 2) COMMENT '支付金额'
) COMMENT '每日用户行为' PARTITIONED BY (`dt` string) stored AS parquet location '/warehouse/gmall/dws/dws_user_action_daycount/' tblproperties (
"parquet.compression" = "lzo"
);
2)数据装载
hive (gmall) >
with tmp_login as (
select
user_id,
count(*) login_count
from dwd_start_log
where dt='2020-12-25'
group by user_id
),
tmp_cart as (
select
user_id,
count(*) cart_count,
sum(cart_price*sku_num)cart_amount
from dwd_fact_cart_info
where dt='2020-12-27'
group by user_id
),
tmp_order as (
select
user_id,
count(*) order_count,
sum(final_total_amount) order_amount
from dwd_fact_order_info
where dt='2020-12-27'
group by user_id
),
tmp_pament as (
select
user_id,
count(*) payment_count,
sum(payment_amount)payment_amount
from dwd_fact_payment_info
where dt='2020-12-27'
group by user_id
)
insert overwrite table dws_user_action_daycount
partition(dt='2020-12-27')
select
user_actions.user_id,
sum(user_actions.login_count),
sum(user_actions.cart_count),
sum(user_actions.cart_amount),
sum(user_actions.order_count),
sum(user_actions.order_amount),
sum(user_actions.payment_count),
sum(user_actions.payment_amount)
from
(
select
user_id,
login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
from tmp_login
union all
select
user_id,
0 login_count,
cart_count,
cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
from tmp_cart
union all
select
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
order_count,
order_amount,
0 payment_count,
0 payment_amount
from tmp_order
union all
select
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
payment_count,
payment_amount
from tmp_pament
)user_actions
group by user_id;
select *from dws_user_action_daycount
3)查询加载结果
hive (gmall)>
select * from dws_user_action_daycount
where dt='2020-03-10';
3.2 每日商品行为
1)建表语句
hive (gmall) > DROP TABLE
IF EXISTS dws_sku_action_daycount;
CREATE external TABLE dws_sku_action_daycount (
sku_id string COMMENT 'sku_id',
order_count BIGINT COMMENT '被下单次数',
order_num BIGINT COMMENT '被下单件数',
order_amount DECIMAL (16, 2) COMMENT '被下单金额',
payment_count BIGINT COMMENT '被支付次数',
payment_num BIGINT COMMENT '被支付件数',
payment_amount DECIMAL (16, 2) COMMENT '被支付金额',
refund_count BIGINT COMMENT '被退款次数',
refund_num BIGINT COMMENT '被退款件数',
refund_amount DECIMAL (16, 2) COMMENT '被退款金额',
cart_count BIGINT COMMENT '被加入购物车次数',
cart_num BIGINT COMMENT '被加入购物车件数',
favor_count BIGINT COMMENT '被收藏次数',
appraise_good_count BIGINT COMMENT '好评数',
appraise_mid_count BIGINT COMMENT '中评数',
appraise_bad_count BIGINT COMMENT '差评数',
appraise_default_count BIGINT COMMENT '默认评价数'
) COMMENT '每日商品行为' PARTITIONED BY (`dt` string) stored AS parquet location '/warehouse/gmall/dws/dws_sku_action_daycount/' tblproperties (
"parquet.compression" = "lzo"
);
2)数据装载
注意:如果是 23 点 59 下单,支付日期跨天。需要从订单详情里面取出支付时间是今天,订单时间是昨天或者今天的订单。
hive (gmall) >
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(total_amount) order_amount
from dwd_fact_order_detail
where dt = '2020-12-27'
GROUP BY sku_id
),
tmp_payment AS (
SELECT
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(total_amount) payment_amount
FROM
dwd_fact_order_detail
WHERE
dt = '2020-12-27'
AND order_id IN (
SELECT
id
FROM
dwd_fact_order_info
WHERE
(
dt = '2020-12-27'
OR dt = date_add('2020-12-27' ,- 1)
)
AND date_format(payment_time, 'yyyy-MM-dd') = '2020-12-27'
)
GROUP BY
sku_id
),
tmp_refund AS (
SELECT
sku_id,
count(*) refund_count,
sum(refund_num) refund_num,
sum(refund_amount) refund_amount
FROM
dwd_fact_order_refund_info
WHERE
dt = '2020-12-27'
GROUP BY
sku_id
),
tmp_cart AS (
SELECT
sku_id,
count(*) cart_count,
sum(sku_num) cart_num
FROM
dwd_fact_cart_info
WHERE
dt = '2020-12-27'
AND date_format(create_time, 'yyyy-MM-dd') = '2020-12-27'
GROUP BY
sku_id
),
tmp_favor AS (
SELECT
sku_id,
count(*) favor_count
FROM
dwd_fact_favor_info
GROUP BY
sku_id
),
tmp_appraise AS (
SELECT
sku_id,
sum(IF(appraise = '1201', 1, 0)) appraise_good_count,
sum(IF(appraise = '1202', 1, 0)) appraise_mid_count,
sum(IF(appraise = '1203', 1, 0)) appraise_bad_count,
sum(IF(appraise = '1204', 1, 0)) appraise_default_count
FROM
dwd_fact_comment_info
WHERE
dt = '2020-12-27'
GROUP BY
sku_id
) INSERT overwrite TABLE dws_sku_action_daycount PARTITION (dt = '2020-12-27') SELECT
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(cart_num),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
FROM
(
SELECT
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_order
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_payment
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_refund
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_cart
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_favor
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
FROM
tmp_appraise
) tmp
GROUP BY
sku_id;
3)查询加载结果
hive (gmall)>
select * from dws_sku_action_daycount where dt='2020-03-10';
3.3 每日优惠券统计(预留)
1)建表语句
hive (gmall) > DROP TABLE
IF EXISTS dws_coupon_use_daycount;
CREATE external TABLE dws_coupon_use_daycount (
`coupon_id` string COMMENT '优惠券 ID',
`coupon_name` string COMMENT '购物券名称',
`coupon_type` string COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` string COMMENT '满额数',
`condition_num` string COMMENT '满件数',
`activity_id` string COMMENT '活动编号',
`benefit_amount` string COMMENT '减金额',
`benefit_discount` string COMMENT '折扣',
`create_time` string COMMENT '创建时间',
`range_type` string COMMENT '范围类型 1、商品 2、品类 3、品牌',
`spu_id` string COMMENT '商品 id',
`tm_id` string COMMENT '品牌 id',
`category3_id` string COMMENT '品类 id',
`limit_num` string COMMENT '最多领用次数',
`get_count` BIGINT COMMENT '领用次数',
`using_count` BIGINT COMMENT '使用(下单)次数',
`used_count` BIGINT COMMENT '使用(支付)次数'
) COMMENT '每日优惠券统计' PARTITIONED BY (`dt` string) stored AS parquet location '/warehouse/gmall/dws/dws_coupon_use_daycount/' tblproperties (
"parquet.compression" = "lzo"
);
2)数据装载
hive (gmall) > INSERT overwrite TABLE dws_coupon_use_daycount PARTITION (dt = '2020-03-10') SELECT
cu.coupon_id,
ci.coupon_name,
ci.coupon_type,
ci.condition_amount,
ci.condition_num,
ci.activity_id,
ci.benefit_amount,
ci.benefit_discount,
ci.create_time,
ci.range_type,
ci.spu_id,
ci.tm_id,
ci.category3_id,
ci.limit_num,
cu.get_count,
cu.using_count,
cu.used_count
FROM
(
SELECT
coupon_id,
sum(
IF (
date_format(get_time, 'yyyy-MM-dd') = '2020-03-10',
1,
0
)
) get_count,
sum(
IF (
date_format(using_time, 'yyyy-MM-dd') = '2020-03-10',
1,
0
)
) using_count,
sum(
IF (
date_format(used_time, 'yyyy-MM-dd') = '2020-03-10',
1,
0
)
) used_count
FROM
dwd_fact_coupon_use
WHERE
dt = '2020-03-10'
GROUP BY
coupon_id
) cu
LEFT JOIN (
SELECT
*
FROM
dwd_dim_coupon_info
WHERE
dt = '2020-03-10'
) ci ON cu.coupon_id = ci.id;
3)查询加载结果
hive (gmall)>
select * from dws_coupon_use_daycount where dt='2020-03-10';
3.4 每日活动统计(预留)
1)建表语句
hive (gmall) > DROP TABLE
IF EXISTS dws_activity_info_daycount;
CREATE external TABLE dws_activity_info_daycount (
`id` string COMMENT '编号',
`activity_name` string COMMENT '活动名称',
`activity_type` string COMMENT '活动类型',
`start_time` string COMMENT '开始时间',
`end_time` string COMMENT '结束时间',
`create_time` string COMMENT '创建时间',
`order_count` BIGINT COMMENT '下单次数',
`payment_count` BIGINT COMMENT '支付次数'
) COMMENT '购物车信息表' PARTITIONED BY (`dt` string) ROW format delimited FIELDS TERMINATED BY '\t' location '/warehouse/gmall/dws/dws_activity_info_daycount/' tblproperties (
"parquet.compression" = "lzo"
);
2)数据装载
hive (gmall) > INSERT overwrite TABLE dws_activity_info_daycount PARTITION (dt = '2020-03-10') SELECT
oi.activity_id,
ai.activity_name,
ai.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
oi.order_count,
oi.payment_count
FROM
(
SELECT
activity_id,
sum(
IF (
date_format(create_time, 'yyyy-MM-dd') = '2020-03-10',
1,
0
)
) order_count,
sum(
IF (
date_format(payment_time, 'yyyy-MM-dd') = '2020-03-10',
1,
0
)
) payment_count
FROM
dwd_fact_order_info
WHERE
(
dt = '2020-03-10'
OR dt = date_add('2020-03-10' ,- 1)
)
AND activity_id IS NOT NULL
GROUP BY
activity_id
) oi
JOIN (
SELECT
*
FROM
dwd_dim_activity_info
WHERE
dt = '2020-03-10'
) ai ON oi.activity_id = ai.id;
3)查询加载结果
hive (gmall)>
select * from dws_activity_info_daycount
where dt='2020-03-10';
3.5 每日购买行为
1)建表语句
hive (gmall) > DROP TABLE
IF EXISTS dws_sale_detail_daycount;
CREATE external TABLE dws_sale_detail_daycount (
user_id string COMMENT '用户 id',
sku_id string COMMENT '商品 id',
user_gender string COMMENT '用户性别',
user_age string COMMENT '用户年龄',
user_level string COMMENT '用户等级',
order_price DECIMAL (10, 2) COMMENT '商品价格',
sku_name string COMMENT '商品名称',
sku_tm_id string COMMENT '品牌 id',
sku_category3_id string COMMENT '商品三级品类 id',
sku_category2_id string COMMENT '商品二级品类 id',
sku_category1_id string COMMENT '商品一级品类 id',
sku_category3_name string COMMENT '商品三级品类名称',
sku_category2_name string COMMENT '商品二级品类名称',
sku_category1_name string COMMENT '商品一级品类名称',
spu_id string COMMENT '商品 spu',
sku_num INT COMMENT '购买个数',
order_count BIGINT COMMENT '当日下单单数',
order_amount DECIMAL (16, 2) COMMENT '当日下单金额'
) COMMENT '每日购买行为' PARTITIONED BY (`dt` string) stored AS parquet location '/warehouse/gmall/dws/dws_sale_detail_daycount/' tblproperties (
"parquet.compression" = "lzo"
);
2)数据装载
hive (gmall) > INSERT overwrite TABLE dws_sale_detail_daycount PARTITION (dt = '2020-03-10') SELECT
op.user_id,
op.sku_id,
ui.gender,
months_between ('2020-03-10', ui.birthday) / 12 age,
ui.user_level,
si.price,
si.sku_name,
si.tm_id,
si.category3_id,
si.category2_id,
si.category1_id,
si.category3_name,
si.category2_name,
si.category1_name,
si.spu_id,
op.sku_num,
op.order_count,
op.order_amount
FROM
(
SELECT
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
sum(total_amount) order_amount
FROM
dwd_fact_order_detail
WHERE
dt = '2020-03-10'
GROUP BY
user_id,
sku_id
) op
JOIN (
SELECT
*
FROM
dwd_dim_user_info_his
WHERE
end_date = '9999-99-99'
) ui ON op.user_id = ui.id
JOIN (
SELECT
*
FROM
dwd_dim_sku_info
WHERE
dt = '2020-03-10'
) si ON op.sku_id = si.id;
3)查询加载结果
hive (gmall)> select * from dws_sale_detail_daycount
where dt='2020-03-10';
5.DWS 层数据导入脚本
1)在/home/atguigu/bin 目录下创建脚本 dwd_to_dws.sh
[atguigu@hadoop102 bin]$ vim dwd_to_dws.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall hive=/opt/module/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;
then
do
_date=$1
else
do
_date=`date -d "-1 day" +%F`
fisql="
INSERT overwrite TABLE $ { APP }.dws_uv_detail_daycount PARTITION (dt = '$do_date') SELECT
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws(
'|',
collect_set (version_code)
) version_code,
concat_ws(
'|',
collect_set (version_name)
) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws(
'|',
collect_set (sdk_version)
) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws(
'|',
collect_set (height_width)
) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
count(*) login_count
FROM
$ { APP }.dwd_start_log
WHERE
dt = '$do_date'
GROUP BY
mid_id;
WITH tmp_login AS (
selectuser_id,
count(*) login_count
FROM
$ { APP }.dwd_start_log
WHERE
dt = '$do_date'
AND user_id IS NOT NULL
GROUP BY
user_id
),
tmp_cart AS (
SELECT
user_id,
count(*) cart_count,
sum(cart_price * sku_num) cart_amount
FROM
$ { APP }.dwd_fact_cart_info
WHERE
dt = '$do_date'
AND user_id IS NOT NULL
AND date_format(create_time, 'yyyy-MM-dd') = '$do_date'
GROUP BY
user_id
),
tmp_order AS (
SELECT
user_id,
count(*) order_count,
sum(final_total_amount) order_amount
FROM
$ { APP }.dwd_fact_order_info
WHERE
dt = '$do_date'
GROUP BY
user_id
),
tmp_payment AS (
SELECT
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
FROM
$ { APP }.dwd_fact_payment_info
WHERE
dt = '$do_date'
GROUP BY
user_id
) INSERT overwrite TABLE $ { APP }.dws_user_action_daycount PARTITION (dt = '$do_date') SELECT
user_actions.user_id,
sum(user_actions.login_count),
sum(user_actions.cart_count),
sum(user_actions.cart_amount),
sum(user_actions.order_count),
sum(user_actions.order_amount),
sum(user_actions.payment_count),
sum(
user_actions.payment_amount
)
FROM
(
SELECT
user_id,
login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
FROM
tmp_loginunion ALL SELECT
user_id,
0 login_count,
cart_count,
cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
FROM
tmp_cart
UNION ALL
SELECT
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
order_count,
order_amount,
0 payment_count,
0 payment_amount
FROM
tmp_order
UNION ALL
SELECT
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
payment_count,
payment_amount
FROM
tmp_payment
) user_actions
GROUP BY
user_id;
WITH tmp_order AS (
SELECT
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(total_amount) order_amount
FROM
$ { APP }.dwd_fact_order_detail
WHERE
dt = '$do_date'
GROUP BY
sku_id
),
tmp_payment AS (
SELECT
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(total_amount) payment_amount
FROM
$ { APP }.dwd_fact_order_detail
WHERE
dt = '$do_date'
AND order_id IN (
SELECT
idfrom $ { APP }.dwd_fact_order_info
WHERE
(
dt = '$do_date'
OR dt = date_add('$do_date' ,- 1)
)
AND date_format(payment_time, 'yyyy-MM-dd') = '$do_date'
)
GROUP BY
sku_id
),
tmp_refund AS (
SELECT
sku_id,
count(*) refund_count,
sum(refund_num) refund_num,
sum(refund_amount) refund_amount
FROM
$ { APP }.dwd_fact_order_refund_info
WHERE
dt = '$do_date'
GROUP BY
sku_id
),
tmp_cart AS (
SELECT
sku_id,
count(*) cart_count,
sum(sku_num) cart_num
FROM
$ { APP }.dwd_fact_cart_info
WHERE
dt = '$do_date'
AND date_format(create_time, 'yyyy-MM-dd') = '$do_date'
GROUP BY
sku_id
),
tmp_favor AS (
SELECT
sku_id,
count(*) favor_count
FROM
$ { APP }.dwd_fact_favor_info
WHERE
dt = '$do_date'
AND date_format(create_time, 'yyyy-MM-dd') = '$do_date'
GROUP BY
sku_id
),
tmp_appraise AS (
SELECT
sku_id,
sum(IF(appraise = '1201', 1, 0)) appraise_good_count,
sum(IF(appraise = '1202', 1, 0)) appraise_mid_count,
sum(IF(appraise = '1203', 1, 0)) appraise_bad_count,
sum(IF(appraise = '1204', 1, 0)) appraise_default_count
FROM
$ { APP }.dwd_fact_comment_info
WHERE
dt = '$do_date'
GROUP BY
sku_id
) INSERT overwrite TABLE $ { APP }.dws_sku_action_daycount PARTITION (dt = '$do_date') SELECT
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(cart_num),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
FROM
(
SELECT
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_order
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_payment
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_refund
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_cart
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
FROM
tmp_favor
UNION ALL
SELECT
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
FROM
tmp_appraise
) tmp
GROUP BY
sku_id;
INSERT overwrite TABLE $ { APP }.dws_coupon_use_daycount PARTITION (dt = '$do_date') SELECT
cu.coupon_id,
ci.coupon_name,
ci.coupon_type,
ci.condition_amount,
ci.condition_num,
ci.activity_id,
ci.benefit_amount,
ci.benefit_discount,
ci.create_time,
ci.range_type,
ci.spu_id,
ci.tm_id,
ci.category3_id,
ci.limit_num,
cu.get_count,
cu.using_count,
cu.used_count
FROM
(
SELECT
coupon_id,
sum(
IF (
date_format(get_time, 'yyyy-MM-dd') = '$do_date',
1,
0
)
) get_count,
sum(
IF (
date_format(using_time, 'yyyy-MM-dd') = '$do_date',
1,
0
)
) using_count,
sum(
IF (
date_format(used_time, 'yyyy-MM-dd') = '$do_date',
1,
0
)
) used_count
FROM
$ { APP }.dwd_fact_coupon_use
WHERE
dt = '$do_date'
GROUP BY
coupon_id
) cu
LEFT JOIN (
SELECT
*
FROM
$ { APP }.dwd_dim_coupon_info
WHERE
dt = '$do_date'
) ci ON cu.coupon_id = ci.id;
INSERT overwrite TABLE $ { APP }.dws_activity_info_daycount PARTITION (dt = '$do_date') SELECT
oi.activity_id,
ai.activity_name,
ai.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
oi.order_count,
oi.payment_count
FROM
(
SELECT
activity_id,
sum(
IF (
date_format(create_time, 'yyyy-MM-dd') = '$do_date',
1,
0
)
) order_count,
sum(
IF (
date_format(payment_time, 'yyyy-MM-dd') = '$do_date',
1,
0
)
) payment_count
FROM
$ { APP }.dwd_fact_order_info
WHERE
(
dt = '$do_date'
OR dt = date_add('$do_date' ,- 1)
)
AND activity_id IS NOT nullgroup BY activity_id
) oi
JOIN (
SELECT
*
FROM
$ { APP }.dwd_dim_activity_info
WHERE
dt = '$do_date'
) ai ON oi.activity_id = ai.id;
INSERT overwrite TABLE $ { APP }.dws_sale_detail_daycount PARTITION (dt = '$do_date') SELECT
op.user_id,
op.sku_id,
ui.gender,
months_between ('$do_date', ui.birthday) / 12 age,
ui.user_level,
si.price,
si.sku_name,
si.tm_id,
si.category3_id,
si.category2_id,
si.category1_id,
si.category3_name,
si.category2_name,
si.category1_name,
si.spu_id,
op.sku_num,
op.order_count,
op.order_amount
FROM
(
SELECT
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
sum(total_amount) order_amount
FROM
$ { APP }.dwd_fact_order_detail
WHERE
dt = '$do_date'
GROUP BY
user_id,
sku_id
) op
JOIN (
SELECT
*
FROM
$ { APP }.dwd_dim_user_info_his
WHERE
end_date = '9999-99-99'
) ui ON op.user_id = ui.id
JOIN (
SELECT
*
FROM
$ { APP }.dwd_dim_sku_info
WHERE
dt = '$do_date'
) si ON op.sku_id = si.id;
"
$hive -e "$sql"
2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 dwd_to_dws.sh
3)执行脚本导入数据
[atguigu@hadoop102 bin]$ dwd_to_dws.sh 2020-03-11 4)
查看导入数据
hive (gmall)>
select * from dws_uv_detail_daycount
where dt='2020-03-11';
select * from dws_user_action_daycount
where dt='2020-03-11';
select * from dws_sku_action_daycount
where dt='2020-03-11';
select * from dws_sale_detail_daycount
where dt='2020-03-11';
select * from dws_coupon_use_daycount
where dt='2020-03-11';
select * from dws_activity_info_daycount
where dt='2020-03-11';