深度学习笔记1:利用numpy从零搭建一个神经网络

很多人说深度学习就是个黑箱子,把图像预处理之后丢进 tensorflow 就能出来预测结果,简单有效又省时省力。如果你已是一名功力纯厚的深度学习工程师,这么做当然没问题。但我想大多数人也和我一样,都是走在学习深度学习的路上,一上来就上框架并没有什么特别不妥之处,但总归是对你理解深度学习的黑箱机制是了无裨益的。所以,我建议在学习深度学习的路上,从最简单的感知机开始写起,一步一步捋清神经网络的结构,以至于激活函数怎么写、采用何种损失函数、前向传播怎么写、后向传播又怎么写,权值如何迭代更新,都需要你自己去实现。若在一开始就直接调用框架,小的 demo 可以跑起来,糊弄一时,看起来就像是鸠摩智在内力未到的情形下强行练习少林寺的 72 绝技,最后走火入魔。

无论你是在看那本深度学习的书,还是在学习 Adrew NG 的 deeplearningai,或者是在学习cs231n,对神经网络的基本理论了如指掌的你一定想亲手用 python 来实现它。笔记1就在不借助任何深度学习框架的基础上,利用 python 的科学计算库 numpy 由最初级的感知机开始,从零搭建一个神经网络模型。


感知机结构


对于感知机模型、神经网络理论这里就不再叙述,相信志在精通深度学习的你对此一定很熟练了。至于对于神经网络中的输入层、隐藏层、输出层、权重与偏置、激活函数、损失函数、前向传播、反向传播、权值更新、梯度下降、微积分中的链式求导、方向梯度等概念,我也假设你很熟练了。所以,接下来就让我们从零搭建一个最初级的神经网络模型。

在写代码前,必须先捋一下思路,咱们先要什么,然后再写什么,你心中必须有个数。要从零开始写一个神经网络,通常的方法是:


定义网络结构(指定输出层、隐藏层、输出层的大小)


初始化模型参数


循环操作:执行前向传播/计算损失/执行后向传播/权值更新



有了上面这个思路,我们就可以开始写了。当然了,本节是写一个最简单的感知机模型,所以网络结构就无需特别定义。首先来定义我们的激活函数,激活函数有很多种,这里我们使用大名鼎鼎的 sigmoid 函数:

直接利用 numpy进行定义sigmoid() 

import numpy as npdef sigmoid(x):

    return 1 / (1 + np.exp(-x))

在无需定义网络结构的情形下,第二步我们就可以直接对模型参数进行初始化。模型参数主要包括权值 w和偏置b,这也是神经网络学习过程要学的东西。继续利用numpy对参数进行初始化:

def initilize_with_zeros(dim):

    w = np.zeros((dim, 1))

    b = 0.0

    #assert(w.shape == (dim, 1))

    #assert(isinstance(b, float) or isinstance(b, int))

    return w, b

接下来就要进入模型的主体部分,执行最后一步那个大的循环操作,这个循环中包括前向传播和计算损失、反向传播和权值更新。这也是神经网络训练过程中每一次需要迭代的部分。这里简单说一下,很多初学者容易被这两个概念绕住,前向传播简单而言就是计算预测 y的过程,而后向传播则是根据预测值和实际值之间的误差不断往回推更新权值和偏置的过程。


前后传播与后向传播

下面我们来定义一个大的前向传播函数,预测值y为模型从输入到经过激活函数处理后的输出的结果。损失函数我们采用交叉熵损失,利用numpy定义如下函数:

def propagate(w, b, X, Y):

    m = X.shape[1]

    A = sigmoid(np.dot(w.T, X) + b)

    cost = -1/m * np.sum(Y*np.log(A) + (1-Y)*np.log(1-A))


    dw = np.dot(X, (A-Y).T)/m

    db = np.sum(A-Y)/m        assert(dw.shape == w.shape)        assert(db.dtype == float)


    cost = np.squeeze(cost)        assert(cost.shape == ())


    grads = { 'dw': dw,               'db': db

    }           

 return grads, cost

在上面的前向传播函数中,我们先是通过激活函数直接表示了感知机输出的预测值,然后通过定义的交叉熵损失函数计算了损失,最后根据损失函数计算了权值 w和偏置b的梯度,将参数梯度结果以字典和损失一起作为函数的输出进行返回。这就是前向传播的编写思路。

接下来循环操作的第二步就是进行反向传播操作,计算每一步的当前损失根据损失对权值进行更新。同样定义一个函数 backward_propagation :

def backward_propagation(w, b, X, Y, num_iterations, learning_rate, print_cost=False):

    cost = []        for i in range(num_iterations):

        grad, cost = propagate(w, b, X, Y)


        dw = grad['dw']

        db = grad['db']


        w = w - learing_rate * dw

        b = b - learning_rate * db                if i % 100 == 0:

            cost.append(cost)                if print_cost and i % 100 == 0:

            print("cost after iteration %i: %f" %(i, cost))


    params = {"dw": w,              "db": b

    }


    grads = {"dw": dw,             "db": db

    }                    

 return params, grads, costs

在上述函数中,我们先是建立了一个损失列表容器,然后将前一步定义的前向传播函数放进去执行迭代操作,计算每一步的当前损失和梯度,利用梯度下降法对权值进行更新,并用字典封装迭代结束时的参数和梯度进行返回。

如上所示,一个简单的神经网络模型(感知机)就搭建起来了。通常模型建好之后我们还需要对测试数据进行预测,所以我们也定义一个预测函数 predict,将模型的概率输出转化为0/1值。

def predict(w, b, X):

    m = X.shape[1]

    Y_prediction = np.zeros((1, m))

    w = w.reshape(X.shape[0], 1)


    A = sigmoid(np.dot(w.T, X)+b)        for i in range(A.shape[1]):                if A[:, i] > 0.5:

            Y_prediction[:, i] = 1

        else:

            Y_prediction[:, i] = 0


    assert(Y_prediction.shape == (1, m))       

 return Y_prediction

到这里整个模型算是写完了,但是我们定义了这么多函数,调用起来太麻烦,所以致力于要写出 pythonic的代码的你们肯定想对这些函数进行一下简单的封装:

def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):


    # initialize parameters with zeros (≈ 1 line of code)

    w, b = initialize_with_zeros(X_train.shape[0])    # Gradient descent (≈ 1 line of code)

    parameters, grads, costs = backwize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)    # Retrieve parameters w and b from dictionary "parameters"

    w = parameters["w"]

    b = parameters["b"]    # Predict test/train set examples (≈ 2 lines of code)

    Y_prediction_train = predict(w, b, X_train)

    Y_prediction_test = predict(w, b, X_test)    # Print train/test Errors

    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))

    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))


    d = {"costs": costs,                 "Y_prediction_test": Y_prediction_test,

         "Y_prediction_train" : Y_prediction_train,

         "w" : w,

         "b" : b,                  "learning_rate" : learning_rate,       

          "num_iterations": num_iterations}        

return d

如此这般一个简易的神经网络就被你用 numpy就写出来了。现在社会浮躁,很多人学习都没有耐心,总是抱着鸠摩智的心态想要一步登天。学习机器学习和深度学习方法很多,但我相信,只有对基本的算法原理每一步都捋清楚,每一步都用最基础的库去实现,你成为一名优秀的机器学习工程师只是时间问题。深度学习第一次推送笔记,加油吧各位!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容