MDNet(SANet)

方法:主要逻辑关系+函数调用关系+图形和语言描述=把握好主要思想和脉络

MDnet--master 源代码目录

--dataset  (存放数据集的文件夹)

--matconvnet  (这个不用说了,是matlab下的CNN框架)

--models (存放已训练模型的文件夹)

--pretraining (实现模型训练功能模块的文件夹)

-seqList (存放otb或者vot数据集的子序列名称列表)

-demo_pretraining (训练网络的demo:

1、调用mdnet_prepare_model,准备CNN网络模型;

2、调用mdnet_pretrain,完成网络的训练和保存)

-mdnet_prepare_model (为MDnet准备初始的卷积网络模型:

1、conv1-3直接采用VGG-M的结构和初始化权重,注意新的网络结构里filters对应原weight{1},

biases对应weight{2};pad由原来的格式[0,0,0,0],变换为0。

2、添加fc4层和相应的relu和dropout层,fc5层和相应的relu和dropout层,fc6层和softmax层,

fc4-6随机初始化,fc6构造为K个分支

注意:fc层的stride为数字1,conv层的stride为数组[1,1],

为了保证fc层的更新,还要设置w和B的倍乘速率和decay)

-mdnet_pretrain (三个参数:seqslist、outFile、roiDir

首先设置各种参数opts,

然后通过调用mdnet_setup_data获得所有图像序列的图像列表以及正负样本bb,保存为roidb,

初始化mdnet,设置fc6的1×1×K×2结构,设置最后一层为softmax_k

训练mdnet,调用的函数为mdnet_train,过程中嵌套调用了生成minibatch的函数getBatch;

最后,调用mdnet_finish_train,将fc6还原为1×1×1×2结构,保存网络到layers

-getBatch(输入为:1、roidb某个子序列所有的图像路径,正样本和负样本bb;

2、img_idx为了组成一个minibatch抽到的8帧图像标号;

3、batch_pos-已设置为32;batch_neg已设置为96;opts代表各个参数结构体

中间变量含义:pos_boxes表示正样本的组合:8帧图像,每帧50个正样本,一共400个正样本

然后从0-400随机抽取32个序号idx,得到长度为32的pos_boxes,

再用pos_idx来标记其所在帧处于8帧里的第几个。

同样的方法得到一个minibatch里的96个负样本,然后正负样本拼接起来;

调用get_batch函数生成minibatch

输出为:128个im和对应的labels,数字2代表正,1为负)

-mdnet_train(输入:net,roidb,getBatch函数

首先,网络参数初始化设定

然后,按照每个序列8帧一个batch,一个序列迭代100次来计算,打乱序列的图像次序后组一个800帧的序列,保存在frame_list里

接着,是训练过程:

外循环是cycle100,内循环是子序列总数K

在内循环里,首先得到每一个batch里乱序8帧的编号,调用getBatch生成图像和label;

然后是backprop,将label送入loss层,调用mdnet_simplenn,实现网络的前向反向计算

注意:mdnet_simplenn中softmax_k是作者自己定义的层,是为fc6的多域设计的

接着是梯度更新

最后是打印训练中的信息

-get_batch(输入:8张图像的列表images,正负样本bb和对应帧1-8编号组成的数组boxes,varargin

输出:128张107×107×3的图像组)

--tracking

-mdnet_run(主代码-实现tracking

1、调用mdnet_init执行初始化

2、bbox回归训练

1.调用gen_samples,生成10000个回归样本

2.调用overlap_ratio计算样本与gt的重叠率

3.选出重叠率大于0.6的样本,随机从中选择1000个作为正样本

4.调用mdnet_features_convX得到正样本经过卷积层处理后的特征图表示

5.将第4步的结果进行维度变换并拉伸为一行,输入到tran_bbox_regressor训练回归模型

3、提取第一帧图像的正负样本经过三层卷积后的特征

4、调用mdnet_finetune_hnm选出hard负样本,并和正样本一起微调net的fc层

5、为在线更新做好数据样本准备

6、从第二帧开始进入主循环

1.在当前帧调用gen-sample选出256个candidate样本,得到卷积后特征;

2.送入fc层,得到fc6二进制输出,正得分最高的五个取平均如果大于0,则为最佳结果,否则,扩大搜索范围

3.bounding box回归调整最后结果

4.做下一帧的数据样本准备,保存正负样本的特征)

-mdnet_finetune_hnm(用hard minibatch来训练CNN:

输入:要微调的net部分(fc层),正样本特征,负样本特征,其他参数

注意hard体现在负样本的选择上,从1024个负样本选出得分最高的96个

输出:微调后的net,以及所有选中的正负样本序号

-mdnet_features_convX(提取输入图像样本bbox的卷积特征:

输入:卷积层、图像、该图像样本box、参数opts

调用mdnet_extract_regions得到样本图像,然后将这些样本图像送入网络vl_simplenn

输出:计算得到其经过卷积层处理后的特征图)

-mdnet_extract_regions(从输入图像提取bounding box regions并调用im_crop去均值并resize到107×107:

输入:图像、该图像样本bbox、参数opts

输出:resize后的各样本图像)

-mdnet_init(初始化tracker:

输入:图像序列image、已训练好的网络net

几乎所有参数的设置都在这里,返回卷积层net_conv,全连接层net_fc,学习和跟踪过程中各

参数的结构体opts)

-gen_samples(根据第一个输入参数决定采样方式,返回采样得到的矩阵box

gaussian,uniform,uniform_aspect,whole四种类型,针对采样的不同需求,如样本正/负)

--utils(一些用来支撑算法实现的函数)

-parseImage(得到图像列表imgList)

-genConfig(得到图像信息conf:

conf.dataset:数据集(是otb/vot)

conf.seqName:序列名称('divng'/'Divid')

conf.imgDir:图像所在目录

conf.imgList:图像列表(../../0001.jpg)

conf.gt:ground truth列表(double类型数组))

-overlap_ratio(计算图像块的重叠率overlap)

-im_crop(-----这是RCNN里的函数------

对输入图像按照图像样本box crop,减去均值(默认128),然后按照比例resize到统一大小107

因边界条件不足比例的补0

输入中有参数padding目前只看到其会影响bbox的尺度,即按照padding扩大区域后再处理)

-train_bbox_regressor(-----这是rcnn里的函数----

输入:每一个3×3的特征图都拉伸为一行,512个拼接成一行X;采样的bbox;groundtruth

输出:一个结构体包含训练好的model和参数-*

SANet基于MDNet,代码有很大的相似性。

utils完全一样、tracking完全一样、pretraining完全一样

datasets数据集格式有些不同

models不同

多了一个rnn模块。

也就是基本逻辑清楚后,需要在数据集的处理和变化的模块上下功夫。代码哪块儿多,哪块儿少?



最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容