Python Tips阅读摘要

发现了一本关于Python精通知识点的好书《Python Tips》,关于Python的进阶的技巧。摘录一些比较有价值的内容作为分享。

*args and **kwargs

在函数定义的时候我们经常看到*args和 *kwargs这两个定义对象。*args代表了函数定义中所有non-keyworded(这个词实在很难翻译)的传入参数,而*kwargs代表的所有带有keyworded的传入参数,举个栗子:

def test_var_args(*args, **kwargs):
    print("args:{0}, kwargs:{1}".format(args,kwargs))
test_var_args(1,2,3)
>>>args:(1, 2, 3), kwargs:{}
test_var_args(a=1,b=2,c=3)
>>>args:(), kwargs:{'a': 1, 'c': 3, 'b': 2}

通过这个栗子我们可以清晰地区分keyworded和non-keyworded的区别了。本质上来说,args是一个数组,kwargs是一个字典。
args and *kwargs 最常用于装饰器,也可以用于monkey patching(猴子补丁),用来在运行时动态修改已有的代码,而不需要修改原始代码。

  • monkey patching
    monkey patch指的是在运行时动态替换,一般是在startup的时候.
    用过gevent就会知道,会在最开头的地方gevent.monkey.patch_all();把标准库中的thread/socket等给替换掉.这样我们在后面使用socket的时候可以跟平常一样使用,无需修改任何代码,但是它变成非阻塞的了.
    应用场景包括,一个已经定义好的函数被大量的引用,如果后面需要替换这个函数的话,直接在函数入口处进行替换即可。举个栗子,将ujson代替json:
main.py

import json  
import ujson  
def monkey_patch_json():  
    json.__name__ = 'ujson'  
    json.dumps = ujson.dumps  
    json.loads = ujson.loads  

monkey_patch_json()  
print 'main.py',json.__name__  
import sub  

======================
sub.py

import json  
print 'sub.py',json.__name__

可以看到json在该模块中被完美替换,这个方法也可以用来做单元测试使用。

Generators生成器

首先区分Iterable、Iterator和Iteration三个概念:任何具有iter()或getitem()方法的对象,Python就认为它是一个iterable;使用内置的iter()函数来生成iterator,iterator可以通过next()方法来获取下一个元素。iterator遍历元素的过程可以认为iteration。
生成器同样是可迭代对象,但是你只能读取一次,因为它并没有把所有值存放内存中,它动态的生成值。
Yield是关键字, 用起来像return,yield在告诉程序,要求函数返回一个生成器,举个栗子:

def createGenerator():
    my_list=range(3)
    for  i in my_list:
        yield i*i
gen= createGenerator() 
print(next(gen))
print(next(gen))
print(next(gen))
print(next(gen)) #StopIteration

Map, Filter and Reduce

  • map
    Map的定义是将某函数处理所有输入参数,其定义为:

map(function_to_apply, list_of_inputs)

例如:

items = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, items))
当时这两者还可以通过lambda表达式进行多个函数处理同一个输入的情况,这是一个非常美妙的转换,栗子如下:

def multiply(x):
    return (x*x)
def add(x):
    return (x+x)

funcs = [multiply, add]
for i in range(5):
    value = list(map(lambda x: x(i), funcs))
    print(value)

# Output:
# [0, 0]
# [1, 2]
# [4, 4]
# [9, 6]
# [16, 8]

神奇的事情发生了,两个函数对于同一个输入参数都进行处理,并返回在了结果中。

  • filter

filter(function_to_apply, list_of_inputs)

在大部分的情况下map和filter都可以通过list/dict/tuple Comprehensions来实现。
List Comprehensions语法:[expr for iter_var in iterable] 或 [expr for iter_var in iterable if cond_expr]
L = [expr for iter_var in iterable]:for iter_var in iterable的作用是依次取 iterable赋值给iter_var,而expr for iter_var in iterable的作用就是依次取值给iter_var,expr做运算后,继续循环,expr运算得到的值赋给变量L

map

map(function_to_apply, list_of_inputs)

通过函数对于结果进行处理,并返回聚集结果。例如:

from functools import reduce
product = reduce((lambda x, y: x * y), [1, 2, 3, 4])

# Output: 24

Collections

Collections包括几个常用的数据结构:

  • defaultdict : 是dict的子类,实现了dict的所有方法,功能使用上与dict.setdefault()类似,但是defaultdict构建时给出默认值。
  • orderdict:dict自排序。
  • counter:计数器,可以对iterator计数,也可以对list计数。
  • deque:队列。
  • nametuple:继承自tuple,我认为本质上是快速创建仅包括属性的类对象,从这个角度上看非常实用。
  • enum:枚举类型,但是必须注意,枚举成员本身类型就是枚举类型,因此如果需要将枚举成员用以读写及比较操作将会报错。
    这篇教程中还讲了一些协程coroutine、异步IO的概念,但都属于技巧性的内容,讲的不透彻就不再一一分享。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容