# 此处演示tensor和numpy数据结构的相互转换
a = torch.ones(5)
b = a.numpy()
# 此处演示当修改numpy数组之后,与之相关联的tensor也会相应的被修改
a.add_(1)
print(a)
print(b)
# 将numpy的Array转换为torch的Tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
torch.save(net1, '7-net.pth') # 保存整个神经网络的结构和模型参数
torch.save(net1.state_dict(), '7-net_params.pth') # 只保存神经网络的模型参数
# 保存和加载整个模型
torch.save(model_object, 'model.pkl')
model = torch.load('model.pkl')
# 仅保存和加载模型参数(推荐使用)
torch.save(model_object.state_dict(), 'params.pkl')
model_object.load_state_dict(torch.load('params.pkl'))