知识图谱和Neo4j图数据库

摘自:http://www.voidcn.com/blog/Daybreak1209/article/p-6186811.html
一、知识图谱


互联网、大数据的背景下,谷歌、百度、搜狗等搜索引擎纷纷基于该背景,创建自己的知识图谱Knowledge Graph(谷歌)、知心(百度)和知立方(搜狗),主要用于改进搜索质量。
1、什么是知识图谱
一种基于图的数据结构,由节点(Point)和边(Edge)组成。其中节点即实体,由一个全局唯一的ID标示,关系(也称属性))用于连接两个节点。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。
2、知识卡片
知识卡片旨在为用户提供更多与搜索内容相关的信息,例如,当在搜索引擎中输入“姚明”作为关键词时,我们发现搜索结果页面的右侧原先用于置放广告的地方被知识卡片所取代。下侧即使与关键词匹配的文档列表。
3、知识图谱的作用
知识图谱最早由谷歌提出,主要用于优化现有的搜索引擎,例如搜索姚明,除了姚明本身的信息,还可关联出姚明的女儿、姚明的妻子等与搜索关键字相关的信息。也就是说搜索引擎的知识图谱越庞大,与某关键字相关的信息越多,再通过分析搜索者的特指,计算出最可能想要看到的信息,通过知识图谱可大大提高搜索的质量和广度。
所以这也可理解为何谷歌百度等搜索引擎大头都为之倾心,创建自己符合自己用户搜索习惯的知识图谱。据不完全统计,Google知识图谱到目前为止包含了5亿个实体和35亿条事实(形如实体-属性-值,和实体-关系-实体)
4、知识图谱上的挖掘
通过大数据抽取和集成已经可以创建知识图谱,为进一步增加知识图谱的知识覆盖率,还需要进一步对知识图谱进行挖掘。常见的挖掘技术:
推理:通过规则引擎,针对实体属性或关系进行挖掘,用于发现未知的隐含关系
实体重要性排序:当查询多个关键字时,搜索引擎将选择与查询更相关的实体来展示。常见的pageRank算法计算知识图谱中实体的重要性。

二、Neo4j图数据库


以上就是一个neo4j图数据库,由顶点-边组成,常用于微博好友关系分析、城市规划、社交、推荐等应用。
1、特性
支持ACID事务
企业版neo4j支持集群搭建,保证HA
轻易扩展上亿节点和关系
拥有自己的高级查询语言cypher高效检索
CSV数据导入,java语言编写均可
2、Cypher语言:
Match where return Create delete set foreach with 关键字同等与sql语句的select 等关键字操作,例如
sql

SELECT name FROM PersonLEFT JOIN Person_Department ON Person.Id = Person_Department.PersonIdLEFT JOIN Department ON Department.Id = Person_Department.DepartmentIdWHERE Department.name = "ITDepartment"

Cypher Statement

MATCH(p:Person)<-[:EMPLOYEE]-(d:Department)WHEREd.name = "IT Department"RETURNp.name

Java Program Conn

Connectioncon = DriverManager.getConnection("jdbc:neo4j://localhost:7474/"); Stringquery ="MATCH (:Person {name:{1}})-[:EMPLOYEE]-(d:Department) RETURN d.name as dept";try (PreparedStatementstmt = con.prepareStatement(QUERY)) { stmt.setString(1,"John"); ResultSetrs = stmt.executeQuery(); while(rs.next()) { Stringdepartment = rs.getString("dept"); .... }

3、应用场景:
反欺诈:通过查找不同账户,如银行、信用卡等,找到该账户其他正常是否正常、相关用户的交易信息是否正常判断用户的信用度。
推荐:通过图数据库,查询某节点的消费情况、好友信息可为其推荐关联度高的好友或可能消费的商品。
因为neo4j的存储原理使得它的查询速度是在O(l)级别的复杂度,查询高效。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容