[Tensorflow2] 数据加载

针对小型常用数据集,tensorflow2中加载数据通常有两种方法:
1、使用keras.datasets


image.png

有几种数据集调用load_data()方法可以加载。

2、使用tf.data.Dataset.from_tensor_slices()方法
相应的tf.data.Dataset还有map,shuffle,range,batch,repeat等方法可供使用

但是针对大型数据集,使用Input Pipeline的方式,进行多线程加载数据。

1 keras.datasets

    (x, y), (x_test, y_test) = keras.datasets.mnist.load_data()
    print(x.shape)
    print(y.shape)
    print(type(x))
    print(type(y))
    print(x.min(), x.max(), x.mean())
     # 获取y的前4个,y的取值为0-9,共10个值,所以one-hot的depth为10
    print(y[:4])
    y_onehot = tf.one_hot(y, depth=10)
    print(y_onehot[:4])

返回结果:
(60000, 28, 28)
(60000,)
<class 'numpy.ndarray'>
<class 'numpy.ndarray'>
0 255 33.318421449829934
[5 0 4 1]
tf.Tensor(
[[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]], shape=(4, 10), dtype=float32)

说明keras.datasets加载的数据是numpy格式,并不是tensor格式,因此在求最小值,最大值,平均值没有用reduce_min,reduce_max和reduce_mean等。

2 tf.data.Dataset.from_tensor_slices()

tf.data.Dataset模块,使其数据读入的操作变得更为方便,而支持多线程(进程)的操作,也在效率上获得了一定程度的提高。
from_tensor_slices方法会对tensor和numpy array的处理一视同仁,所以该方法既可以使用tensor参数,也可以直接使用numpy array作为参数

    db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
    print(x_test.shape)
    # 必须先取到迭代器
    print(next(iter(db))[0].shape)

返回结果:
(10000, 28, 28)
(28, 28)

上述方法是面对小数据集的情况,面对大数据集的情况有如下方法,参考博客:
https://www.jianshu.com/p/f580f4fc2ba0

3 tf.data.Dataset的其他相关方法

<1> tf.data.Dataset.shuffle(buffer_size):对数据集进行打散,shuffle可以给定参数,代表在多大的一个范围内进行打散,该参数可以给大一些。
数据预处理功能
<2> tf.data.Dataset.map:

def preprocess(x, y):
    x = tf.cast(x, dtype=tf.float32) / 255.
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)
    return x, y
# 使用map操作,对单值调用preprocess方法
db2=db.map(preprocess)

<3> batch方法
通常我们是对每一批元素进行操作,可以指定批的大小

db3=db2.batch(32)
res=next(iter(db3))

<4> repeat方法
repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(2)就可以将之变成两个epoch。
注意,如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常。

4 总结

# 数据集加载的过程:
def prepare_mnist_features_and_labels(x, y):
    x = tf.cast(x, tf.float32) / 255.
    y = tf.cast(y, tf.int64)
    return x, y


def mnist_dataset():
    (x, y), (x_val, y_val) = keras.datasets.fashion_mnist.load_data()
    y = tf.one_hot(y, depth=10)
    y_val = tf.one_hot(y_val, depth=10)

    ds = tf.data.Dataset.from_tensor_slices((x, y))
    ds = ds.map(prepare_mnist_features_and_labels)
    ds = ds.shuffle(60000).batch(100)
    ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
    ds_val = ds_val.map(prepare_mnist_features_and_labels)
    ds_val = ds_val.shuffle(60000).batch(100)
    return ds, ds_val

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容