hive桶表

hive桶表

1 桶表的概念

在hive中,数据库、表、分区都是对应到hdfs上的路径,当往表中上传数据的时候,数据会传到对应的路径下,形成新的文件,文件名的格式类似为00000_0...每次插入文件都会形成新的文件,命名也是有规律的,桶表就是对应不同的文件的。
hive中有桶的概念,对于每一个表或者分区来说,可以进一步组织成桶,其实就是更细粒度的数据范围。
hive采用列值哈希,然后除以桶的个数以求余数的方式确定该条记录是存放在那个表中。

公式:whichBucket = hash(columnValue) % numberOfBuckets

hive桶表最大限度的保证了每个桶中的文件中的数据量大致相同,不会造成数据倾斜。

总结:桶表就是对一次进入表的数据进行文件级别的划分。

2 使用桶表的好处

  1. 获得更高的查询处理效率,桶表加上额外的结构,hivee在处理有些查询的时候能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分桶的表,可以使用map端连接(map-side join)高效的实现。比如join操作。对于join操作两个表有一个相同的列,如果对这两个表都进行桶的操作。那么僵保存相同列值得桶进行join操作就可以了。可以大大尖山join的数据量。
  2. 使取样(sampling)更高效;在处理大规模数据集时,在开发和修改查询阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。

注意 clustered by 和sorted by不会影响数据的导入,这意味着,用户必须自己负责数据是如何导入的,包括数据的分桶和排序。

桶表通常是和抽样联合使用的,桶表可以使数据分散存放,这是对每个文件进行抽样的话,就极大的保证了抽样的均衡性。如果数据姓谢的话就会导致抽样的不均匀。

3 创建桶表的语法

create table emp(id int, name string) 
CLUSTERED BY (id) INTO 2 BUCKETS 
row format delimited 
fields terminated by '\t'
lines terminated by '\n'
stored as textfile;

clustered by 后面加的列一定是在表中存在的列,后面接的是桶的个数,2意味着一次上传数据会根据id的hash值再与2取模,根据这个值决定这条数据落入那个文件中。

hive> desc formatted emp;
OK
# col_name              data_type               comment

id                      int
name                    string

# Detailed Table Information
Database:               test
Owner:                  yanzhelee
CreateTime:             Sun Jul 23 08:15:16 PDT 2017
LastAccessTime:         UNKNOWN
Retention:              0
Location:               hdfs://s200/user/hive/warehouse/test.db/emp
Table Type:             MANAGED_TABLE
Table Parameters:
        COLUMN_STATS_ACCURATE   {\"BASIC_STATS\":\"true\"}
        numFiles                0
        numRows                 0
        rawDataSize             0
        totalSize               0
        transient_lastDdlTime   1500822916

# Storage Information
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
InputFormat:            org.apache.hadoop.mapred.TextInputFormat
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
Compressed:             No
Num Buckets:            2
Bucket Columns:         [id]
Sort Columns:           []
Storage Desc Params:
        field.delim             ,
        line.delim              \n
        serialization.format    ,
Time taken: 0.157 seconds, Fetched: 33 row(s)

准备一个原始表src_emp,其中的字段也是id和name,里面的内容随意,id递增。

1,tom
2,toms
3,jerry
4,bob
5,tomas

4 插入数据

桶的数量意味着产生文件的数量,那么两个桶就应该使用2个reduce任务来完成,但是默认情况下hive至启动一个reducer,所以要修改reducer的数量,可以通过设置强制分桶机制来保证reducer数量和桶的数量一致。
set hive.enforce.bucketing = true;
这个一定要改成true,hive就会根据桶的数量启动reducer数量。

注意:参数在设置的时候一定不能写错,hive是不提示错误的。

然后将这个表中的数据查询出来插入到桶表中。
insert into emp select * from src_emp;
从启动的作业信息来看,reducer的数量被改成2,这样的结果 是会产生和桶数相同的文件数量。

5 思考

当使用了强制分桶的参数后,如果一次插入的数据量很少,那么会不会生成和桶数相同数量的文件呢?
会的,强制分桶就是强制产生桶文件,不论一次插入的数量是多少,可能会有空的文件产生。

参考博文

http://www.cnblogs.com/wujin/p/6093401.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容