如何通过一致性聚类实现对表达谱数据的亚型分类

image

​通过ConsensusClusterPlus包对基因表达谱执行一致性聚类(Consensus Clustering)

在大样本的组学分析中,经常需要讨论样本的分子分型。文章中最常见的方法,就是使用一种叫一致性聚类(Consensus Clustering)的方法,对转录组、蛋白组谱等数据进行聚类,最后可以将样本划分为不同的聚类群,不同聚类群的样本之间在转录组、蛋白组等分子模式上存在明显差异,但各聚类群内的样本的分子模式则较为相似,如此则实现了对大样本队列的分子分型的目的。

例如,在“Proteogenomic landscape of squamous cell lung cancer”这篇文献中,作者基于108个肺鳞状细胞癌样本的定量蛋白组数据,通过一致性聚类将108个肿瘤组织划分为5种分子亚型,即(1)炎症亚型A、(2)炎症亚型B、(3)氧化还原亚型A、(4)氧化还原亚型B以及(5)混合亚型。并在获得了分子亚型后,后续展开的详细亚型特征的描述和讨论。

image

好了,现在假设我们也有类似的一批组学样本队列,我们也期望通过一致性聚类实现对转录组、蛋白组或者蛋白修饰谱的分型,该如何实现呢?本节教程简介通过R语言ConsensusClusterPlus包实现一致性聚类的方法。

1 准备表达谱数据集

首先准备一个基因表达矩阵,将它读入到R中。可以是转录组(如RNA-seq,芯片数据等),也可以是定量蛋白组,或者蛋白磷酸化、糖基化等修饰。具体以哪种类型的数据为主,根据实际关注的问题来。如果您更期望使用转录组进行分型,就使用RNA表达谱;如果您更期望使用蛋白组进行分型,就使用蛋白定量谱;如果您更关注蛋白修饰的分型,就使用表观修饰的组学。

本次我们以Biobase包的芯片数据集为例,展示如何对基因表达谱执行一致性聚类分析。首先来看一下示例数据,该数据集一共包含26个样本,500个基因的表达谱。

#以Biobase包的表达谱芯片数据集为例
library(Biobase)

data(geneData)
geneData[1:6,1:6]
image

2 通过ConsensusClusterPlus包执行聚类

能够执行一致性聚类的R包很多,但基本原理都是差不多的。这里我们以ConsensusClusterPlus包的方法为例作为展示。

#通过Bioconductor安装ConsensusClusterPlus包
#BiocManager::install("ConsensusClusterPlus")

#加载ConsensusClusterPlus包
library(ConsensusClusterPlus)

#对基因表达数据执行中位数中心化,以用于后续聚类
dc <- sweep(geneData,1, apply(geneData,1,median))

#使用函数ConsensusClusterPlus()执行聚类
cluster <- ConsensusClusterPlus(
  d = dc, 
  maxK = 4, 
  pItem = 0.8, 
  pFeature = 1, 
  clusterAlg = "hc", 
  distance = "pearson", 
  seed = 1234, 
  innerLinkage = "complete", 
  finalLinkage = "complete", 
  corUse = "pairwise.complete.obs",
  plot = 'png', 
  title = "example"
)

过程大致包括两步,(1)对表达谱数据的标准化,(2)对标准化后的数据执行聚类。函数执行完毕后,R语言的当前工作目录下会生成一个文件夹(本示例以“example”未命名),里面存放了聚类结果图。

3 结果说明

在本示例中,我们通过参数“maxK = 4”指定了期望划分的最大聚类群数量,即从聚2类开始,逐一增加类别数量进行尝试,直到到达指定的最大聚类群数量4为止结束。

结果中,这两张图可以帮助我们评估选择最合适的聚类数量。我们需要同时考虑这两个标准,根据左图选择CDF下降坡度更小的曲线,根据右图选择CDF更高的值。通常而言这两个标准趋势相反,也就是我们需要尽量保证CDF下降不那么剧烈且CDF值也不能太小。在这里,似乎当k=3时是最合适的。当然,有时不一定要遵守这个方法,一些研究也按照自己的研究目的选择了其它最优k值标准。

image

这些图展示了在不同的k值(划分的聚类群数量)下,样本的聚类情况。在示例中,似乎k=3时相对更好一些。

image

该图展示了在不同的k值(划分的聚类群数量)下,各样本所属的聚类群。

#查看样本所属的聚类群
cluster

#例如,查看当划分3个聚类群时,各样本所属的聚类情况
#其它聚类群的情况,更改数字即可
cluster[[3]]$consensusClass 
image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容