[动态规划]Leetcode 1143.最长公共子序列

如果读者对于动态规划思路解法还不是很了解,可以查阅我之前的一篇博文《算法之【动态规划】详解》,很详细的介绍了动态规划求解思路及方法,有利于你更好的学习动态规划。

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例1

输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace",它的长度为 3。

示例2

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。

提示:

1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。

DP定义及状态方程

一般来说对于两个字符串类型的长度问题,都会定义一个dp[i][j]代表字符串s1[1...i]s2[1...j]所求的问题。对于本题同样定义

dp[i][j]表示s1[1...i]s2[1...j]的最长公共子序列为dp[i][j]

递推方程

  1. 那么当s1[i-1]==s2[i-1]时,dp[i][j]的最长公共子序列是在dp[i-1][j-1]的基础上加1,即dp[i][j]=dp[i-1][j-1]+1;

  2. s1[i-1]!=s2[i-1]时,dp[i][j]的最长公共子序列为max(dp[i][j-1], d[i-1][j])

  3. 本题的目标值即为dp[len(s1)-1][len(s2)-1]

    dp数组结构 如下图所示:

    [图片上传失败...(image-e272a7-1607172884882)]注意:字符串的索引是从1开始的,0的位置代表空字符串。

初始边界条件

对于str1为空时,s2[j]均为0,即dp[0][j]=00=< j< len(s2);

同理 dp[i][0]=0,0 =< i < len(s1)

最终代码如下

# 动态规划
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m = len(text1)
        n = len(text2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m+1):
            for j in range(1, n+1):
                if text1[i-1] == text2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i][j-1],dp[i-1][j])
        return dp[-1][-1] #dp的最后一个数即为本题答案

附上递归形式的写法,思想其实与dp数组求解形式相同,只是需要用备忘录memo记录已经求解过的值,防止重复计算。

#递归的形式求解
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        # 递归
        memo = {} #备忘录
        def dp(i, j):
            if i == -1 or j == -1:
                return 0
            if (i,j) in memo:
                return memo[(i,j)]
            if text1[i] == text2[j]:
                memo[(i,j)] = dp(i-1, j-1) + 1
            else:
                memo[(i,j)] = max(dp(i-1, j), dp(i,j-1))
            return memo[(i,j)]
        return dp(len(text1)-1,len(text2)-1)

如果喜欢作者,欢迎点赞、收藏及关注,谢谢!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容