scrapy 深度爬取之 crawlspider

今天来聊聊scrapy 框架中一个很实用的框架,

1. CrawlSpiders

通过下面的命令可以快速创建 CrawlSpider模板 的代码

scrapy genspider -t crawl 文件名 (allowed_url)

首先在说下Spider,它是所有爬虫的基类,而CrawSpiders就是Spider的派生类。对于设计原则是只爬取start_url列表中的网页,而从爬取的网页中获取link并继续爬取的工作CrawlSpider类更适合

2. Rule对象

Rule类与CrawlSpider类都位于scrapy.contrib.spiders模块中

class scrapy.contrib.spiders.Rule (  
link_extractor, callback=None,cb_kwargs=None,follow=None,process_links=None,process_request=None )

参数含义:

  • link_extractor为LinkExtractor,用于定义需要提取的链接

  • callback参数:当link_extractor获取到链接时参数所指定的值作为回调函数

    • callback参数使用注意: 当编写爬虫规则时,请避免使用parse作为回调函数。于CrawlSpider使用parse方法来实现其逻辑,如果您覆盖了parse方法,crawlspider将会运行失败
  • follow:指定了根据该规则从response提取的链接是否需要跟进。当callback为None,默认值为True

  • process_links:主要用来过滤由link_extractor获取到的链接

  • process_request:主要用来过滤在rule中提取到的request

3.LinkExtractors

3.1 概念

顾名思义,链接提取器

3.2 作用

response对象中获取链接,并且该链接会被接下来爬取 每个LinkExtractor有唯一的公共方法是 extract_links(),它接收一个 Response 对象,并返回一个 scrapy.link.Link 对象

3.3 使用

class scrapy.linkextractors.LinkExtractor(
    allow = (),
    deny = (),
    allow_domains = (),
    deny_domains = (),
    deny_extensions = None,
    restrict_xpaths = (),
    tags = ('a','area'),
    attrs = ('href'),
    canonicalize = True,
    unique = True,
    process_value = None
)

主要参数:

  • allow:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。

  • deny:与这个正则表达式(或正则表达式列表)不匹配的URL一定不提取。

  • allow_domains:会被提取的链接的domains。

  • deny_domains:一定不会被提取链接的domains。

  • restrict_xpaths:使用xpath表达式,和allow共同作用过滤链接(只选到节点,不选到属性)

3.3.1 查看效果(shell中验证)

首先运行

scrapy shell http://www.******.com/read/33/33539/17829387.shtml

继续import相关模块:

from scrapy.linkextractors import LinkExtractor

提取当前网页中获得的链接

link = LinkExtractor(restrict_xpaths=(r'//div[@class="bottem"]/a[4]')

调用LinkExtractor实例的extract_links()方法查询匹配结果

link.extract_links(response)
3.3.2 查看效果 CrawlSpider版本
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from xiaoshuo.items import XiaoshuoItem

class XiaoshuoSpiderSpider(CrawlSpider):
    name = 'xiaoshuo_spider'
    allowed_domains = ['*****.com']
    start_urls = ['http://www.****.com']

    rules = [
        Rule(LinkExtractor(restrict_xpaths=(r'//div[@class="bottem"]/a[4]')), callback='parse_item'),]

    def parse_item(self, response):
        info = response.xpath("//div[@id='TXT']/text()").extract()
        it = XiaoshuoItem()
        it['info'] = info
        yield it

注意:

rules = [
        Rule(LinkExtractor(restrict_xpaths=(r'//div[@class="bottem"]/a[4]')), callback='parse_item'),]
  • callback后面函数名用引号引起
  • 函数名不能是parse
  • 格式问题
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容