neural-admixture:基于AI的快速基因组聚类

最近学习祖源分析方面的内容,发现已经有了GPU版的软件,可以几十倍地加快运算速度,推荐使用!小数据集的话家用显卡即可hold住,十分给力!
ADMIXTURE 是常用的群体遗传学分析工具,可以估计个体的祖先成分。使用neural-admixture 可以将一个月的连续计算时间缩短到几个小时。多头方法允许神经 ADMIXTURE 通过在单个集群中计算多个集群数来进一步加速
在一次运行中计算多个集群数。此外
模型可以存储,从而可以在线性时间内对新数据执行集群分配,而无需共享数据。
无需共享训练样本



发表在NCS上的论文,nature子刊,应该足够权威的。

软件简介

Neural ADMIXTURE 是一种基于 ADMIXTURE 的无监督全局祖先推理技术。通过使用神经网络,Neural ADMIXTURE 提供高质量的祖先分配,运行时间比 ADMIX 快得多。


该软件可以通过 CLI 调用,并且具有与 ADMIXTURE 类似的界面(例如,输出格式完全可互换)。虽然该软件在 CPU 和 GPU 中运行,但我们建议使用 GPU(如果可用)以利用基于神经网络的实现。

系统要求

硬件要求

成功使用此软件包需要一台具有足够 RAM 的计算机,以便能够处理网络设计为使用的大型数据集。因此,我们建议尽可能使用计算集群,以避免内存问题。

软件要求

该软件包已在 Linux(CentOS 7.9.2009、Ubuntu 18.04.5 LTS)和 MacOS(BigSur 11.2.3、Intel 和 Monterey 12.3.1、M1)上进行了测试。如果使用 GPU,请确保正确安装了 CUDA 驱动程序,如果已经装好了CUDA会自动安装GPU版本。

亲测建议使用conda创建新的 Python 3.9 环境,然后在其中安装软件包。例如,对于 ,应启动以下命令:

conda create -n nadmenv python=python3.9 
conda activate nadmenv
pip install neural-admixture

用法

运行 Neural ADMIXTURE

要从头开始训练模型,只需从项目的根目录调用以下命令即可。
有监督训练:

neural-admixture train --k K --supervised --populations_path POPS_PATH --name RUN_NAME --data_path DATA_PATH --save_dir SAVE_PATH 
# only single-head support at the moment

运行时间竟然不线性增长,很平的一条线。



软件的模型架构,总体看分为编码器和解码器,分为单头和多头两种。


快来测试使用一下吧!生信AI化已经是趋势,期待更多的工具和进展,持续关注中!
教程详见github:AI-sandbox/neural-admixture:使用自动编码器进行快速种群聚类 (github.com)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345

推荐阅读更多精彩内容