<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.baozi</groupId>
<artifactId>spark-learning</artifactId>
<version>1.0-SNAPSHOT</version>
<inceptionYear>2008</inceptionYear>
<properties>
<scala.version>2.11.8</scala.version>
<spark.version>2.1.0</spark.version>
<hadoop.version>2.6.0-cdh5.7.0</hadoop.version>
<hbase.version>1.2.0-cdh5.7.0</hbase.version>
<kafka.version>0.9.0.0</kafka.version>
</properties>
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
<dependencies>
<!-- Scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- Spark Streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- Hadoop -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<!-- HBase -->
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>${hbase.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>${hbase.version}</version>
</dependency>
<!-- kafka -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>${kafka.version}</version>
</dependency>
<!--
如果报错:
java.lang.ClassNotFoundException: com.fasterxml.jackson.annotation.ObjectIdResolver
就添加这个,添加的版本根据maven中依赖的该项目的版本而定
-->
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.11</artifactId>
<version>2.6.5</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
处理Socket数据
$ nc -lk 9999
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
object NetworkWordCount {
def main(args: Array[String]): Unit = {
// SparkConf
val conf = new SparkConf()
.setMaster("local[2]") // local至少两个,一个Receiver使用,一个执行处理操作
.setAppName("NetworkWordCount")
.set("spark.driver.host", "localhost")
// StreamingContext,Seconds表示每几秒为一批次
val ssc = new StreamingContext(conf, Seconds(5))
// 关键代码
// StorageLevel.MEMORY_AND_DISK_SER_2:存在内存和磁盘上,序列化,2份
val lines = ssc.socketTextStream("localhost", 9999)
val result = lines.flatMap(_.split(" ")).map((_ , 1)).reduceByKey(_ + _)
result.print()
// ~
ssc.start()
ssc.awaitTermination()
}
}
处理文件系统数据
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* 使用Spark Streaming处理文件系统(local/hdfs)的数据
*/
object FileWordCount {
def main(args: Array[String]): Unit = {
// SparkConf
val conf = new SparkConf()
.setMaster("local") // 不需要Receiver
.setAppName("FileWordCount")
.set("spark.driver.host", "localhost")
// StreamingContext
val ssc = new StreamingContext(conf, Seconds(5))
// 关键代码
val lines = ssc.textFileStream("file:///Users/baozi/temp-doc/ss") // 填写目录就可以了
val result = lines.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
result.print()
// ~
ssc.start()
ssc.awaitTermination()
}
}
在随便一个目录(我在/Users/baozi/temp-doc/)下创建一个测试文件,然后cp或者mv文件到指定的目录(/Users/baozi/temp-doc/ss)下。
1. 放入指定目录的文件,必须是统一数据格式。
2. 指定目录的每个文件必须是一次性添加进来。
3. 处理过的文件不会再处理,修改也无效。
updateStateByKey
这种方式会累加之前批次的处理结果。
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* 使用updateStateByKey
*/
object StatefulWordCount {
def main(args: Array[String]): Unit = {
// SparkConf
val conf = new SparkConf()
.setMaster("local[2]")
.setAppName("StatefulWordCount")
.set("spark.driver.host", "localhost")
// StreamingContext
val ssc = new StreamingContext(conf, Seconds(5))
// 如果使用了stateful的算子,必须要设置checkpoint
// 实际生产环境最好放到hdfs上
ssc.checkpoint(".")
// 关键代码
val lines = ssc.socketTextStream("localhost", 9999)
val result = lines.flatMap(_.split(" ")).map((_ , 1))
// 这种方式会累加每次批处理的结果,例如:
// 第一批输入a a a b b c,统计出:(a,3) (b,2) (c,1)
// 第二批再输入a a a b b c,会累加之前的:(a,6) (b,4) (c,2)
val state = result.updateStateByKey[Int](updateFunction _)
state.print()
// ~
ssc.start()
ssc.awaitTermination()
}
/**
* @param curValues 本批次的数据
* @param preValues 已有的数据
* @return
*/
def updateFunction(curValues: Seq[Int], preValues: Option[Int]): Option[Int] = {
val current = curValues.sum
val previous = preValues.getOrElse(0)
Some(current + previous)
}
}