1.简介
本篇文章,我们来研究一下 Dubbo 导出服务的过程。Dubbo 服务导出过程始于 Spring 容器发布刷新事件,Dubbo 在接收到事件后,会立即执行服务导出逻辑。整个逻辑大致可分为三个部分,第一部分是前置工作,主要用于检查参数,组装 URL。第二部分是导出服务,包含导出服务到本地 (JVM),和导出服务到远程两个过程。第三部分是向注册中心注册服务,用于服务发现。本篇文章将会对这三个部分代码进行详细的分析。
2.源码分析
2.1 源于事件监听
服务导出的入口方法是 DubboBootstrapApplicationListener
的 onApplicationContextEvent(ApplicationContextEvent event)
。我们来看一下这个类的结构:
onApplicationContextEvent(ApplicationContextEvent event)
是一个事件响应方法,该方法会在收到 Spring 上下文刷新事件后执行服务导出操作。方法代码如下:
@Override
public void onApplicationContextEvent(ApplicationContextEvent event) {
if (event instanceof ContextRefreshedEvent) {
onContextRefreshedEvent((ContextRefreshedEvent) event);
} else if (event instanceof ContextClosedEvent) {
onContextClosedEvent((ContextClosedEvent) event);
}
}
private void onContextRefreshedEvent(ContextRefreshedEvent event) {
// 启动类封装
dubboBootstrap.start();
}
我们来看一下start
方法执行哪些操作,代码如下:
/**
* Start the bootstrap
*/
public DubboBootstrap start() {
// 保证刷新事件只会触发一次duboo的启动类
if (started.compareAndSet(false, true)) {
ready.set(false);
initialize();
if (logger.isInfoEnabled()) {
logger.info(NAME + " is starting...");
}
// 1. 导出Dubbo服务
exportServices();
// Not only provider register
if (!isOnlyRegisterProvider() || hasExportedServices()) {
// 2. 导出 MetadataService
exportMetadataService();
//3. 如果需要的话,注册本地服务实例
registerServiceInstance();
}
referServices();
if (asyncExportingFutures.size() > 0) {
new Thread(() -> {
try {
this.awaitFinish();
} catch (Exception e) {
logger.warn(NAME + " exportAsync occurred an exception.");
}
ready.set(true);
if (logger.isInfoEnabled()) {
logger.info(NAME + " is ready.");
}
}).start();
} else {
ready.set(true);
if (logger.isInfoEnabled()) {
logger.info(NAME + " is ready.");
}
}
if (logger.isInfoEnabled()) {
logger.info(NAME + " has started.");
}
}
return this;
}
我们看一下 exportServices 方法:
private void exportServices() {
configManager.getServices().forEach(sc -> {
ServiceConfig serviceConfig = (ServiceConfig) sc;
serviceConfig.setBootstrap(this);
if (exportAsync) {
ExecutorService executor = executorRepository.getServiceExporterExecutor();
Future<?> future = executor.submit(() -> {
sc.export();
exportedServices.add(sc);
});
asyncExportingFutures.add(future);
} else {
sc.export();
exportedServices.add(sc);
}
});
}
这个方法,Debug看一下
[图片上传失败...(image-a4b84c-1587054229281)]
先是 configManager
中获取多个 serviceBean
,而 serviceBean
又是如何来的呢?这得了解Dubbo配置是怎样实现的;
2.2 Dubbo配置实现
2.2.1 Config依赖
2.2.2 配置管理
我们知道spring加载xml或annotation,第一步需要将这些配置元数据载入spring容器中,首先确认下这些<dubbo:* >
标签,对应的数据载体类。
我们以官方给的服务导出的Demo的配置文件为例:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dubbo="http://dubbo.apache.org/schema/dubbo"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.3.xsd
http://dubbo.apache.org/schema/dubbo http://dubbo.apache.org/schema/dubbo/dubbo.xsd">
<dubbo:application metadata-type="remote" name="demo-provider"/>
<dubbo:metadata-report address="zookeeper://127.0.0.1:2181"/>
<dubbo:registry address="zookeeper://127.0.0.1:2181"/>
<dubbo:protocol name="dubbo"/>
<bean id="demoService" class="org.apache.dubbo.demo.provider.DemoServiceImpl"/>
<dubbo:service interface="org.apache.dubbo.demo.DemoService" ref="demoService"/>
</beans>
找到 dubbo-config\dubbo-config-spring\src\main\resources\META-INF\spring.handlers 文件。找到负责具体解析dubbo标签的handler。
http\://dubbo.apache.org/schema/dubbo=org.apache.dubbo.config.spring.schema.DubboNamespaceHandler
http\://code.alibabatech.com/schema/dubbo=org.apache.dubbo.config.spring.schema.DubboNamespaceHandler
查看DubboNamespaceHandler
代码,可以看到,dubbo自定义标签最终是由DubboNamespaceHandler
进行处理的,通过前面对spring自定义标签的讲解我们知道,该类必然实现了NamespaceHandler
接口,而我们只需要查看其init()
方法是如何实现的即可。如下是该类的源码:
public class DubboNamespaceHandler extends NamespaceHandlerSupport implements ConfigurableSourceBeanMetadataElement {
static {
Version.checkDuplicate(DubboNamespaceHandler.class);
}
@Override
public void init() {
registerBeanDefinitionParser("application", new DubboBeanDefinitionParser(ApplicationConfig.class, true));
registerBeanDefinitionParser("module", new DubboBeanDefinitionParser(ModuleConfig.class, true));
registerBeanDefinitionParser("registry", new DubboBeanDefinitionParser(RegistryConfig.class, true));
registerBeanDefinitionParser("config-center", new DubboBeanDefinitionParser(ConfigCenterBean.class, true));
registerBeanDefinitionParser("metadata-report", new DubboBeanDefinitionParser(MetadataReportConfig.class, true));
registerBeanDefinitionParser("monitor", new DubboBeanDefinitionParser(MonitorConfig.class, true));
registerBeanDefinitionParser("metrics", new DubboBeanDefinitionParser(MetricsConfig.class, true));
registerBeanDefinitionParser("ssl", new DubboBeanDefinitionParser(SslConfig.class, true));
registerBeanDefinitionParser("provider", new DubboBeanDefinitionParser(ProviderConfig.class, true));
registerBeanDefinitionParser("consumer", new DubboBeanDefinitionParser(ConsumerConfig.class, true));
registerBeanDefinitionParser("protocol", new DubboBeanDefinitionParser(ProtocolConfig.class, true));
registerBeanDefinitionParser("service", new DubboBeanDefinitionParser(ServiceBean.class, true));
registerBeanDefinitionParser("reference", new DubboBeanDefinitionParser(ReferenceBean.class, false));
registerBeanDefinitionParser("annotation", new AnnotationBeanDefinitionParser());
}
// 省略其他代码...
}
对于dubbo的各个子标签的bean的生成,最终都是通过DubboBeanDefinitionParser
来实现的,而该Parser必然也实现了BeanDefinitionParser
接口,最终通过其parse()
方法来将标签属性解析为各个bean属性。这里我们直接阅读其parse()
方法较长😴:
@Override
public BeanDefinition parse(Element element, ParserContext parserContext) {
// Register DubboConfigAliasPostProcessor
registerDubboConfigAliasPostProcessor(parserContext.getRegistry());
return parse(element, parserContext, beanClass, required);
}
@SuppressWarnings("unchecked")
private static BeanDefinition parse(Element element, ParserContext parserContext, Class<?> beanClass, boolean required) {
RootBeanDefinition beanDefinition = new RootBeanDefinition();
beanDefinition.setBeanClass(beanClass);
beanDefinition.setLazyInit(false);
// 这里会尝试获取当前标签的id值,如果当前标签不存在id值,则会根据以下策略来为其生成一个bean name:
// 1. 获取其name属性,将其作为当前bean的名称;
// 2. 如果name属性不存在,则获取其interface属性,将其作为bean的名称,这里如果beanClass
// 是ProtocolConfig,则直接以dubbo作为其名称,这是因为ProtocolConfig中没有interface属性;
// 3. 如果还是无法获取到名称,则直接以beanClass的名称作为其名称;
// 4. 到这里,也就能保证一定会获取到一个名称,但是很有可能该名称在当前spring容器中已经使用过了,
// 那么这里会判断当前容器中是否包含该名称,如果包含,则在一个无限循环中在其名称后加一个数字,
// 最终一定能够保证生成的名称是唯一的
String id = element.getAttribute("id");
if (StringUtils.isEmpty(id) && required) {
// 获取name属性的值
String generatedBeanName = element.getAttribute("name");
if (StringUtils.isEmpty(generatedBeanName)) {
if (ProtocolConfig.class.equals(beanClass)) {
generatedBeanName = "dubbo";
} else {
generatedBeanName = element.getAttribute("interface");
}
}
// 获取beanClass的名称
if (StringUtils.isEmpty(generatedBeanName)) {
generatedBeanName = beanClass.getName();
}
id = generatedBeanName;
int counter = 2;
// 通过无限循环生成唯一的bean名称
while (parserContext.getRegistry().containsBeanDefinition(id)) {
id = generatedBeanName + (counter++);
}
}
if (StringUtils.isNotEmpty(id)) {
// 将当前的BeanDefinition注册到BeanDefinitionRegistry中,并且这里会设置其id属性值
if (parserContext.getRegistry().containsBeanDefinition(id)) {
throw new IllegalStateException("Duplicate spring bean id " + id);
}
parserContext.getRegistry().registerBeanDefinition(id, beanDefinition);
beanDefinition.getPropertyValues().addPropertyValue("id", id);
}
// 这里判断当前注册的beanClass是否为ProtocolConfig,如果是,则在当前BeanDefinitionRegistry
// 中找到所有的包含这样一种属性的BeanDefinition,该属性名为protocol,属性值为ProtocolConfig
// 类型,如果找到了,则将当前生成的ProtocolConfig的属性注入到这些找到的BeanDefinition中
if (ProtocolConfig.class.equals(beanClass)) {
for (String name : parserContext.getRegistry().getBeanDefinitionNames()) {
BeanDefinition definition = parserContext.getRegistry().getBeanDefinition(name);
PropertyValue property = definition.getPropertyValues().getPropertyValue("protocol");
if (property != null) {
Object value = property.getValue();
if (value instanceof ProtocolConfig && id.equals(((ProtocolConfig) value).getName())) {
definition.getPropertyValues().addPropertyValue("protocol", new RuntimeBeanReference(id));
}
}
}
// 如果当前beanClass是ServiceBean,这种bean对应的标签是<dubbo:service/>,这里会获取该标签
// 中的class属性值,并以该class为准创建一个BeanDefinition,然后将该BeanDefinition作为当前
// BeanDefinition的ref属性注入其中。
// 这里parseProperties()方法会获取当前标签的所有<property/>子标签,
// 然后将其属性注入到新生成的BeanDefinition中
} else if (ServiceBean.class.equals(beanClass)) {
String className = element.getAttribute("class");
if (StringUtils.isNotEmpty(className)) {
RootBeanDefinition classDefinition = new RootBeanDefinition();
classDefinition.setBeanClass(ReflectUtils.forName(className));
classDefinition.setLazyInit(false);
// 转换<property/>子标签的属性值
parseProperties(element.getChildNodes(), classDefinition);
beanDefinition.getPropertyValues().addPropertyValue("ref", new BeanDefinitionHolder(classDefinition, id + "Impl"));
}
// 这里判断beanClass是否为ProviderConfig类型,如果是该类型,则将相关逻辑委托给parseNested()
// 方法进行处理,该方法的主要有两个作用:
// 1. 获取第一个标签名为service的子标签,判断其是否有default属性,如果有,则将该属性设置为当前
// BeanDefinition的default属性值,也就是将当前的provider作为默认的provider;
// 2. 遍历得到所有的标签名为service的子标签,通过递归的方式在当前BeanDefinitionRegistry中注册
// 注册ServiceBean,并且将其provider设置为当前父标签的provider。也就是说,通过这种方式,
// 我们可以为特定的ServiceBean自定义设置其provider配置。
} else if (ProviderConfig.class.equals(beanClass)) {
parseNested(element, parserContext, ServiceBean.class, true, "service", "provider", id, beanDefinition);
// 这里的逻辑与上面的provider的处理方式一致,即配置一个默认的consumer,然后将其子标签中定义的
// reference设置默认的consumer为当前的consumer
} else if (ConsumerConfig.class.equals(beanClass)) {
parseNested(element, parserContext, ReferenceBean.class, false, "reference", "consumer", id, beanDefinition);
}
Set<String> props = new HashSet<>();
ManagedMap parameters = null;
// 除去上面的特殊情况以外,下面的逻辑主要目的是获取当前beanClass中的各个属性名,然后获取当前标签
// 中对应于该属性名的各个标签值,并将其转换到对应的属性中
for (Method setter : beanClass.getMethods()) {
// 获取当前beanClass中所有的set方法,并且通过该方法获取其后属性的名称
String name = setter.getName();
if (name.length() > 3 && name.startsWith("set")
&& Modifier.isPublic(setter.getModifiers())
&& setter.getParameterTypes().length == 1) {
Class<?> type = setter.getParameterTypes()[0];
String beanProperty = name.substring(3, 4).toLowerCase() + name.substring(4);
String property = StringUtils.camelToSplitName(beanProperty, "-");
props.add(property);
// check the setter/getter whether match
Method getter = null;
try {
// 判断当前set方法对应的属性是否有对应的get方法或is方法,如果没有则忽略该属性
getter = beanClass.getMethod("get" + name.substring(3), new Class<?>[0]);
} catch (NoSuchMethodException e) {
try {
getter = beanClass.getMethod("is" + name.substring(3), new Class<?>[0]);
} catch (NoSuchMethodException e2) {
// ignore, there is no need any log here since some class implement the interface: EnvironmentAware,
// ApplicationAware, etc. They only have setter method, otherwise will cause the error log during application start up.
}
}
// 没有get方法或is方法则忽略该属性
if (getter == null
|| !Modifier.isPublic(getter.getModifiers())
|| !type.equals(getter.getReturnType())) {
continue;
}
if ("parameters".equals(property)) {
// 获取当前标签的所有名称为parameter的子标签,将该标签中设置的属性值注入到当前
// BeanDefinition的parameters属性中
parameters = parseParameters(element.getChildNodes(), beanDefinition);
} else if ("methods".equals(property)) {
// 获取当前标签的所有名称为method的子标签,并将这每一个子标签都注册
// 为一个MethodConfig的对象,最终将这些对象注入到当前BeanDefinition
// 的methods属性中
parseMethods(id, element.getChildNodes(), beanDefinition, parserContext);
} else if ("arguments".equals(property)) {
// 获取当前标签的所有名称为argument的子标签,并将这每一个子标签都注册为一个
// ArgumentConfig的对象,最终将这些对象注入到当前BeanDefinition
// 的arguments属性中
parseArguments(id, element.getChildNodes(), beanDefinition, parserContext);
} else {
// 如果当前属性名不是上述的几种特例情况,则会在当前标签中获取与属性名同名的标签的值,
// 如果该值为空,则不进行处理
String value = element.getAttribute(property);
if (value != null) {
value = value.trim();
if (value.length() > 0) {
if ("registry".equals(property) && RegistryConfig.NO_AVAILABLE.equalsIgnoreCase(value)) {
// 如果当前属性名为registry,并且其值为N/A,则为期生成一个空的
// RegistryConfig对象注入到当前BeanDefinition中
RegistryConfig registryConfig = new RegistryConfig();
registryConfig.setAddress(RegistryConfig.NO_AVAILABLE);
beanDefinition.getPropertyValues().addPropertyValue(beanProperty, registryConfig);
} else if ("provider".equals(property) || "registry".equals(property) || ("protocol".equals(property) && AbstractServiceConfig.class.isAssignableFrom(beanClass))) {
/**
* For 'provider' 'protocol' 'registry', keep literal value (should be id/name) and set the value to 'registryIds' 'providerIds' protocolIds'
* The following process should make sure each id refers to the corresponding instance, here's how to find the instance for different use cases:
* 1. Spring, check existing bean by id, see{@link ServiceBean#afterPropertiesSet()}; then try to use id to find configs defined in remote Config Center
* 2. API, directly use id to find configs defined in remote Config Center; if all config instances are defined locally, please use {@link ServiceConfig#setRegistries(List)}
*/
beanDefinition.getPropertyValues().addPropertyValue(beanProperty + "Ids", value);
} else {
Object reference;
if (isPrimitive(type)) {
// 如果当前属性类型是基本数据类型,并且其值为默认值,
// 则将当前属性设置为空
if ("async".equals(property) && "false".equals(value)
|| "timeout".equals(property) && "0".equals(value)
|| "delay".equals(property) && "0".equals(value)
|| "version".equals(property) && "0.0.0".equals(value)
|| "stat".equals(property) && "-1".equals(value)
|| "reliable".equals(property) && "false".equals(value)) {
// backward compatibility for the default value in old version's xsd
value = null;
}
reference = value;
} else if (ONRETURN.equals(property) || ONTHROW.equals(property) || ONINVOKE.equals(property)) {
// 如果当前属性为上述几种,则获取该属性所指定的bean名称和方法名,
// 将其设置到当前的BeanDefinition中
int index = value.lastIndexOf(".");
String ref = value.substring(0, index);
String method = value.substring(index + 1);
reference = new RuntimeBeanReference(ref);
beanDefinition.getPropertyValues().addPropertyValue(property + METHOD, method);
} else {
if ("ref".equals(property) && parserContext.getRegistry().containsBeanDefinition(value)) {
// 如果属性名为ref,并且当前BeanDefinitionRegistry中包含有
// 该名称的bean,则将该bean注入到当前BeanDefinition中
BeanDefinition refBean = parserContext.getRegistry().getBeanDefinition(value);
if (!refBean.isSingleton()) {
throw new IllegalStateException("The exported service ref " + value + " must be singleton! Please set the " + value + " bean scope to singleton, eg: <bean id=\"" + value + "\" scope=\"singleton\" ...>");
}
}
reference = new RuntimeBeanReference(value);
}
beanDefinition.getPropertyValues().addPropertyValue(beanProperty, reference);
}
}
}
}
}
}
// 对于那些在标签中存在,但是在当前beanClass中不存在的属性,dubbo会将其以键值对的形式
// 存入到当前BeanDefinition的parameters属性中
NamedNodeMap attributes = element.getAttributes();
int len = attributes.getLength();
for (int i = 0; i < len; i++) {
Node node = attributes.item(i);
String name = node.getLocalName();
if (!props.contains(name)) {
if (parameters == null) {
parameters = new ManagedMap();
}
String value = node.getNodeValue();
parameters.put(name, new TypedStringValue(value, String.class));
}
}
if (parameters != null) {
beanDefinition.getPropertyValues().addPropertyValue("parameters", parameters);
}
return beanDefinition;
}
在上述解析过程中,dubbo首先会为当前BeanDefinition生成一个名称,然后判断当前beanClass是否为ProtocolConfig
,ServiceBean
,ProviderConfig
和ConsumerConfig
中的一个,如果是,则会进行一定的特殊解析。在特殊解析完成后,dubbo会获取当前beanClass的所有属性,然后在当前标签中查找对应的标签值,并将其设置到对应的属性中,最终完成所有属性值的装配。
之后会调用AbstractCofig的标有@PostConstruct 注解的addIntoConfigManager
方法,将响应的Config托给ConfigManager管理
/**
* Add {@link AbstractConfig instance} into {@link ConfigManager}
* <p>
* Current method will invoked by Spring or Java EE container automatically, or should be triggered manually.
*
* @see ConfigManager#addConfig(AbstractConfig)
* @since 2.7.5
*/
@PostConstruct
public void addIntoConfigManager() {
ApplicationModel.getConfigManager().addConfig(this);
}private final Map<String, Map<String, AbstractConfig>> configsCache = newMap();`
ConfigManager
中维护了一份配置缓存,存储响应的配置数据(我们本章关注的是dubbo:service 标签的配置的导出的服务接口)
private final Map<String, Map<String, AbstractConfig>> configsCache = newMap();
最后通过从configsCache获取serviceBean
,代码如下:
protected <C extends AbstractConfig> Map<String, C> getConfigsMap(String configType) {
return (Map<String, C>) read(() -> configsCache.getOrDefault(configType, emptyMap()));
}
2.3 服务导出
我们继续回到 2.1 章节,继续了解 导出的详细过程, ServiceBean 继承自 ServiceConfig ,ServiceConfig 本身带了一个 ScheduledExecutorService 用于某个 bean 延迟启动 (这个感觉类的对象消耗挺大的,因为每个 service bean 都带有一个 ScheduledExecutorService 字段,而服务一般都会有多个),我们在代码 sc.export() 这句就会看到具体的实现。
// ServiceConfig#export()
@Override
public synchronized void export() {
if (!shouldExport()) {
return;
}
if (bootstrap == null) {
bootstrap = DubboBootstrap.getInstance();
bootstrap.init();
}
checkAndUpdateSubConfigs();
// init serviceMetadata
serviceMetadata.setVersion(version);
serviceMetadata.setGroup(group);
serviceMetadata.setDefaultGroup(group);
serviceMetadata.setServiceType(getInterfaceClass());
serviceMetadata.setServiceInterfaceName(getInterface());
serviceMetadata.setTarget(getRef());
// 延迟导出
if (shouldDelay()) {
DELAY_EXPORT_EXECUTOR.schedule(this::doExport, getDelay(), TimeUnit.MILLISECONDS);
} else {
// 最终调用这个方法
doExport();
}
exported();
}
// ServiceConfig#doExport()
protected synchronized void doExport() {
if (unexported) {
throw new IllegalStateException("The service " + interfaceClass.getName() + " has already unexported!");
}
if (exported) {
return;
}
exported = true;
if (StringUtils.isEmpty(path)) {
path = interfaceName;
}
doExportUrls();
}
// ServiceConfig#doExportUrls()
@SuppressWarnings({"unchecked", "rawtypes"})
private void doExportUrls() {
ServiceRepository repository = ApplicationModel.getServiceRepository();
ServiceDescriptor serviceDescriptor = repository.registerService(getInterfaceClass());
repository.registerProvider(
getUniqueServiceName(),
ref,
serviceDescriptor,
this,
serviceMetadata
);
// URL 中 protocol属性 zookeeper-> registry,🎯接下来会调用RegistryProtocol#export方法
List<URL> registryURLs = ConfigValidationUtils.loadRegistries(this, true);
for (ProtocolConfig protocolConfig : protocols) {
String pathKey = URL.buildKey(getContextPath(protocolConfig)
.map(p -> p + "/" + path)
.orElse(path), group, version);
// In case user specified path, register service one more time to map it to path.
repository.registerService(pathKey, interfaceClass);
// TODO, uncomment this line once service key is unified
serviceMetadata.setServiceKey(pathKey);
doExportUrlsFor1Protocol(protocolConfig, registryURLs);
}
}
通过调试 registryURLs 一个例子例如这样 :
registry://172.20.xx.xx:2181/org.apache.dubbo.registry.RegistryService?application=demo-provider&dubbo=2.0.2&metadata-type=remote&pid=7900&qos.port=22222®istry=zookeeper×tamp=1587026084220
可以知道前面的逻辑是获取 protocol 信息,获取知道 某个 service 是通过什么 protocol 进行传输的,于是进入了这个方法😴😴😴又是很长的代码 :
private void doExportUrlsFor1Protocol(ProtocolConfig protocolConfig, List<URL> registryURLs) {
String name = protocolConfig.getName();
if (StringUtils.isEmpty(name)) {
name = DUBBO;
}
//这一段设置了一堆信息到 map中,见下图
Map<String, String> map = new HashMap<String, String>();
省略.....
//init serviceMetadata attachments
serviceMetadata.getAttachments().putAll(map);
// 导出核心逻辑
// export service
String host = findConfigedHosts(protocolConfig, registryURLs, map);
Integer port = findConfigedPorts(protocolConfig, name, map);
URL url = new URL(name, host, port, getContextPath(protocolConfig).map(p -> p + "/" + path).orElse(path), map);
// 加载 ConfiguratorFactory,并生成 Configurator 实例,然后通过实例配置 url
if (ExtensionLoader.getExtensionLoader(ConfiguratorFactory.class)
.hasExtension(url.getProtocol())) {
url = ExtensionLoader.getExtensionLoader(ConfiguratorFactory.class)
.getExtension(url.getProtocol()).getConfigurator(url).configure(url);
}
String scope = url.getParameter(SCOPE_KEY);
// 如果 scope = none,则什么都不做
if (!SCOPE_NONE.equalsIgnoreCase(scope)) {
// scope != remote,导出到本地
if (!SCOPE_REMOTE.equalsIgnoreCase(scope)) {
exportLocal(url);
}
// scope != local,导出到远程
if (!SCOPE_LOCAL.equalsIgnoreCase(scope)) {
if (CollectionUtils.isNotEmpty(registryURLs)) {
for (URL registryURL : registryURLs) {
//if protocol is only injvm ,not register
if (LOCAL_PROTOCOL.equalsIgnoreCase(url.getProtocol())) {
continue;
}
url = url.addParameterIfAbsent(DYNAMIC_KEY, registryURL.getParameter(DYNAMIC_KEY));
// 加载监视器链接
URL monitorUrl = ConfigValidationUtils.loadMonitor(this, registryURL);
if (monitorUrl != null) {
// 将监视器链接作为参数添加到 url 中
url = url.addParameterAndEncoded(MONITOR_KEY, monitorUrl.toFullString());
}
// 省略无关代码...(日志)
}
// For providers, this is used to enable custom proxy to generate invoker
String proxy = url.getParameter(PROXY_KEY);
if (StringUtils.isNotEmpty(proxy)) {
registryURL = registryURL.addParameter(PROXY_KEY, proxy);
}
//注意这里!!使用 ProxyFactory 为服务提供类(ref)生成 Invoker (相当与 spring 中的 AOP 实现)
Invoker<?> invoker = PROXY_FACTORY.getInvoker(ref, (Class) interfaceClass, registryURL.addParameterAndEncoded(EXPORT_KEY, url.toFullString()));
// DelegateProviderMetaDataInvoker 用于持有 Invoker 和 ServiceConfig
DelegateProviderMetaDataInvoker wrapperInvoker = new DelegateProviderMetaDataInvoker(invoker, this);
// 导出服务,并生成 Exporter
Exporter<?> exporter = PROTOCOL.export(wrapperInvoker);
exporters.add(exporter);
}
// 不存在注册中心,仅导出服务
} else {
Invoker<?> invoker = PROXY_FACTORY.getInvoker(ref, (Class) interfaceClass, url);
DelegateProviderMetaDataInvoker wrapperInvoker = new DelegateProviderMetaDataInvoker(invoker, this);
Exporter<?> exporter = PROTOCOL.export(wrapperInvoker);
exporters.add(exporter);
}
/**
* @since 2.7.0
* ServiceData Store
*/
WritableMetadataService metadataService = WritableMetadataService.getExtension(url.getParameter(METADATA_KEY, DEFAULT_METADATA_STORAGE_TYPE));
if (metadataService != null) {
metadataService.publishServiceDefinition(url);
}
}
}
this.urls.add(url);
}
总结来说有以下几个步骤:
- 封装 map信息,示例如下:
- PROXY_FACTORY 生成 invoker
- 生成包装类
- 调用 protocol 的 export 方法
上面代码根据 url 中的 scope 参数决定服务导出方式,分别如下:
- scope = none,不导出服务
- scope != remote,导出到本地
- scope != local,导出到远程
不管是导出到本地,还是远程。进行服务导出之前,均需要先创建 Invoker,这是一个很重要的步骤。因此下面先来分析 Invoker 的创建过程。
2.3.1 Invoker 创建过程
在 Dubbo 中,Invoker 是一个非常重要的模型。在服务提供端,以及服务引用端均会出现 Invoker。Dubbo 官方文档中对 Invoker 进行了说明,这里引用一下。
Invoker 是实体域,它是 Dubbo 的核心模型,其它模型都向它靠扰,或转换成它,它代表一个可执行体,可向它发起 invoke 调用,它有可能是一个本地的实现,也可能是一个远程的实现,也可能一个集群实现。
既然 Invoker 如此重要,那么我们很有必要搞清楚 Invoker 的用途。Invoker 是由 ProxyFactory 创建而来,Dubbo 默认的 ProxyFactory 实现类是 JavassistProxyFactory。下面我们到 JavassistProxyFactory 代码中,探索 Invoker 的创建过程。如下:
public class JavassistProxyFactory extends AbstractProxyFactory {
@Override
public <T> Invoker<T> getInvoker(T proxy, Class<T> type, URL url) {
// 为目标类创建 Wrapper
final Wrapper wrapper = Wrapper.getWrapper(proxy.getClass().getName().indexOf('$') < 0 ? proxy.getClass() : type);
// 创建匿名 Invoker 类对象,并实现 doInvoke 方法。
return new AbstractProxyInvoker<T>(proxy, type, url) {
@Override
protected Object doInvoke(T proxy, String methodName,
Class<?>[] parameterTypes,
Object[] arguments) throws Throwable {
// 调用 Wrapper 的 invokeMethod 方法,invokeMethod 最终会调用目标方法
return wrapper.invokeMethod(proxy, methodName, parameterTypes, arguments);
}
};
}
}
如上,JavassistProxyFactory 创建了一个继承自 AbstractProxyInvoker 类的匿名对象,并覆写了抽象方法 doInvoke。覆写后的 doInvoke 逻辑比较简单,仅是将调用请求转发给了 Wrapper 类的 invokeMethod 方法。Wrapper 用于“包裹”目标类,Wrapper 是一个抽象类,仅可通过 getWrapper(Class) 方法创建子类。在创建 Wrapper 子类的过程中,子类代码生成逻辑会对 getWrapper 方法传入的 Class 对象进行解析,拿到诸如类方法,类成员变量等信息。以及生成 invokeMethod 方法代码和其他一些方法代码。代码生成完毕后,通过 Javassist 生成 Class 对象,最后再通过反射创建 Wrapper 实例。相关的代码如下:
public static Wrapper getWrapper(Class<?> c) {
while (ClassGenerator.isDynamicClass(c)) {
c = c.getSuperclass();
}
if (c == Object.class) {
return OBJECT_WRAPPER;
}
return WRAPPER_MAP.computeIfAbsent(c, key -> makeWrapper(key));
}
getWrapper 方法仅包含一些缓存操作逻辑,不难理解。下面我们看一下 makeWrapper 方法。
private static Wrapper makeWrapper(Class<?> c) {
// 检测 c 是否为基本类型,若是则抛出异常
if (c.isPrimitive()) {
throw new IllegalArgumentException("Can not create wrapper for primitive type: " + c);
}
String name = c.getName();
ClassLoader cl = ClassUtils.getClassLoader(c);
// c1 用于存储 setPropertyValue 方法代码
StringBuilder c1 = new StringBuilder("public void setPropertyValue(Object o, String n, Object v){ ");
// c2 用于存储 getPropertyValue 方法代码
StringBuilder c2 = new StringBuilder("public Object getPropertyValue(Object o, String n){ ");
// c3 用于存储 invokeMethod 方法代码
StringBuilder c3 = new StringBuilder("public Object invokeMethod(Object o, String n, Class[] p, Object[] v) throws " + InvocationTargetException.class.getName() + "{ ");
// 生成类型转换代码及异常捕捉代码,比如:
// DemoService w; try { w = ((DemoServcie) $1); }}catch(Throwable e){ throw new IllegalArgumentException(e); }
c1.append(name).append(" w; try{ w = ((").append(name).append(")$1); }catch(Throwable e){ throw new IllegalArgumentException(e); }");
c2.append(name).append(" w; try{ w = ((").append(name).append(")$1); }catch(Throwable e){ throw new IllegalArgumentException(e); }");
c3.append(name).append(" w; try{ w = ((").append(name).append(")$1); }catch(Throwable e){ throw new IllegalArgumentException(e); }");
// pts 用于存储成员变量名和类型
Map<String, Class<?>> pts = new HashMap<>();
// ms 用于存储方法描述信息(可理解为方法签名)及 Method 实例
Map<String, Method> ms = new LinkedHashMap<>();
// mns 为方法名列表
List<String> mns = new ArrayList<>();
// dmns 用于存储“定义在当前类中的方法”的名称
List<String> dmns = new ArrayList<>();
// --------------------------------✨ 分割线1 ✨-------------------------------------
// 获取 public 访问级别的字段,并为所有字段生成条件判断语句
for (Field f : c.getFields()) {
String fn = f.getName();
Class<?> ft = f.getType();
if (Modifier.isStatic(f.getModifiers()) || Modifier.isTransient(f.getModifiers())) {
// 忽略关键字 static 或 transient 修饰的变量
continue;
}
// 生成条件判断及赋值语句,比如:
// if( $2.equals("name") ) { w.name = (java.lang.String) $3; return;}
// if( $2.equals("age") ) { w.age = ((Number) $3).intValue(); return;}
c1.append(" if( $2.equals(\"").append(fn).append("\") ){ w.").append(fn).append("=").append(arg(ft, "$3")).append("; return; }");
// 生成条件判断及返回语句,比如:
// if( $2.equals("name") ) { return ($w)w.name; }
c2.append(" if( $2.equals(\"").append(fn).append("\") ){ return ($w)w.").append(fn).append("; }");
// 存储 <字段名, 字段类型> 键值对到 pts 中
pts.put(fn, ft);
}
// --------------------------------✨ 分割线2 ✨-------------------------------------
Method[] methods = c.getMethods();
// 检测 c 中是否包含在当前类中声明的方法
boolean hasMethod = hasMethods(methods);
if (hasMethod) {
c3.append(" try{");
for (Method m : methods) {
//ignore Object's method.
if (m.getDeclaringClass() == Object.class) {
// 忽略 Object 中定义的方法
continue;
}
String mn = m.getName();
// 生成方法名判断语句,比如:
// if ( "sayHello".equals( $2 )
c3.append(" if( \"").append(mn).append("\".equals( $2 ) ");
int len = m.getParameterTypes().length;
// 生成“运行时传入的参数数量与方法参数列表长度”判断语句,比如:
// && $3.length == 2
c3.append(" && ").append(" $3.length == ").append(len);
boolean override = false;
for (Method m2 : methods) {
// 检测方法是否存在重载情况,条件为:方法对象不同 && 方法名相同
if (m != m2 && m.getName().equals(m2.getName())) {
override = true;
break;
}
}
// 对重载方法进行处理,考虑下面的方法:
// 1. void sayHello(Integer, String)
// 2. void sayHello(Integer, Integer)
// 方法名相同,参数列表长度也相同,因此不能仅通过这两项判断两个方法是否相等。
// 需要进一步判断方法的参数类型
if (override) {
if (len > 0) {
for (int l = 0; l < len; l++) {
// 生成参数类型进行检测代码,比如:
// && $3[0].getName().equals("java.lang.Integer")
// && $3[1].getName().equals("java.lang.String")
c3.append(" && ").append(" $3[").append(l).append("].getName().equals(\"")
.append(m.getParameterTypes()[l].getName()).append("\")");
}
}
}
// 添加 ) {,完成方法判断语句,此时生成的代码可能如下(已格式化):
// if ("sayHello".equals($2)
// && $3.length == 2
// && $3[0].getName().equals("java.lang.Integer")
// && $3[1].getName().equals("java.lang.String")) {
c3.append(" ) { ");
// 根据返回值类型生成目标方法调用语句
if (m.getReturnType() == Void.TYPE) {
// w.sayHello((java.lang.Integer)$4[0], (java.lang.String)$4[1]); return null;
c3.append(" w.").append(mn).append('(').append(args(m.getParameterTypes(), "$4")).append(");").append(" return null;");
} else {
// return w.sayHello((java.lang.Integer)$4[0], (java.lang.String)$4[1]);
c3.append(" return ($w)w.").append(mn).append('(').append(args(m.getParameterTypes(), "$4")).append(");");
}
// 添加 }, 生成的代码形如(已格式化):
// if ("sayHello".equals($2)
// && $3.length == 2
// && $3[0].getName().equals("java.lang.Integer")
// && $3[1].getName().equals("java.lang.String")) {
//
// w.sayHello((java.lang.Integer)$4[0], (java.lang.String)$4[1]);
// return null;
// }
c3.append(" }");
// 添加方法名到 mns 集合中
mns.add(mn);
// 检测当前方法是否在 c 中被声明的
if (m.getDeclaringClass() == c) {
// 若是,则将当前方法名添加到 dmns 中
dmns.add(mn);
}
ms.put(ReflectUtils.getDesc(m), m);
}
// 添加异常捕捉语句
c3.append(" } catch(Throwable e) { ");
c3.append(" throw new java.lang.reflect.InvocationTargetException(e); ");
c3.append(" }");
}
// 添加 NoSuchMethodException 异常抛出代码
c3.append(" throw new ").append(NoSuchMethodException.class.getName()).append("(\"Not found method \\\"\"+$2+\"\\\" in class ").append(c.getName()).append(".\"); }");
// --------------------------------✨ 分割线3 ✨-------------------------------------
// 处理 get/set 方法
Matcher matcher;
for (Map.Entry<String, Method> entry : ms.entrySet()) {
String md = entry.getKey();
Method method = entry.getValue();
// 匹配以 get 开头的方法
if ((matcher = ReflectUtils.GETTER_METHOD_DESC_PATTERN.matcher(md)).matches()) {
String pn = propertyName(matcher.group(1));
// 生成属性判断以及返回语句,示例如下:
// if( $2.equals("dream") ) { return ($w).w.hasDream(); }
c2.append(" if( $2.equals(\"").append(pn).append("\") ){ return ($w)w.").append(method.getName()).append("(); }");
pts.put(pn, method.getReturnType());
// 匹配以 is/has/can 开头的方法
} else if ((matcher = ReflectUtils.IS_HAS_CAN_METHOD_DESC_PATTERN.matcher(md)).matches()) {
String pn = propertyName(matcher.group(1));
// 生成属性判断以及返回语句,示例如下:
// if( $2.equals("dream") ) { return ($w).w.hasDream(); }
c2.append(" if( $2.equals(\"").append(pn).append("\") ){ return ($w)w.").append(method.getName()).append("(); }");
pts.put(pn, method.getReturnType());
// 匹配以 set 开头的方法
} else if ((matcher = ReflectUtils.SETTER_METHOD_DESC_PATTERN.matcher(md)).matches()) {
Class<?> pt = method.getParameterTypes()[0];
String pn = propertyName(matcher.group(1));
// 生成属性判断以及 setter 调用语句,示例如下:
// if( $2.equals("name") ) { w.setName((java.lang.String)$3); return; }
c1.append(" if( $2.equals(\"").append(pn).append("\") ){ w.").append(method.getName()).append("(").append(arg(pt, "$3")).append("); return; }");
pts.put(pn, pt);
}
}
// 添加 NoSuchPropertyException 异常抛出代码
c1.append(" throw new ").append(NoSuchPropertyException.class.getName()).append("(\"Not found property \\\"\"+$2+\"\\\" field or setter method in class ").append(c.getName()).append(".\"); }");
c2.append(" throw new ").append(NoSuchPropertyException.class.getName()).append("(\"Not found property \\\"\"+$2+\"\\\" field or setter method in class ").append(c.getName()).append(".\"); }");
// --------------------------------✨ 分割线4 ✨-------------------------------------
// make class
long id = WRAPPER_CLASS_COUNTER.getAndIncrement();
// 创建类生成器
ClassGenerator cc = ClassGenerator.newInstance(cl);
// 设置类名及超类
cc.setClassName((Modifier.isPublic(c.getModifiers()) ? Wrapper.class.getName() : c.getName() + "$sw") + id);
cc.setSuperClass(Wrapper.class);
// 添加默认构造方法
cc.addDefaultConstructor();
// 添加字段
cc.addField("public static String[] pns;"); // property name array.
cc.addField("public static " + Map.class.getName() + " pts;"); // property type map.
cc.addField("public static String[] mns;"); // all method name array.
cc.addField("public static String[] dmns;"); // declared method name array.
for (int i = 0, len = ms.size(); i < len; i++) {
cc.addField("public static Class[] mts" + i + ";");
}
// 添加方法代码
cc.addMethod("public String[] getPropertyNames(){ return pns; }");
cc.addMethod("public boolean hasProperty(String n){ return pts.containsKey($1); }");
cc.addMethod("public Class getPropertyType(String n){ return (Class)pts.get($1); }");
cc.addMethod("public String[] getMethodNames(){ return mns; }");
cc.addMethod("public String[] getDeclaredMethodNames(){ return dmns; }");
cc.addMethod(c1.toString());
cc.addMethod(c2.toString());
cc.addMethod(c3.toString());
try {
// 生成类
Class<?> wc = cc.toClass();
// 设置字段值
wc.getField("pts").set(null, pts);
wc.getField("pns").set(null, pts.keySet().toArray(new String[0]));
wc.getField("mns").set(null, mns.toArray(new String[0]));
wc.getField("dmns").set(null, dmns.toArray(new String[0]));
int ix = 0;
for (Method m : ms.values()) {
wc.getField("mts" + ix++).set(null, m.getParameterTypes());
}
// 创建 Wrapper 实例
return (Wrapper) wc.newInstance();
} catch (RuntimeException e) {
throw e;
} catch (Throwable e) {
throw new RuntimeException(e.getMessage(), e);
} finally {
cc.release();
ms.clear();
mns.clear();
dmns.clear();
}
}
上面代码很长,大家耐心看一下。我们在上面代码中做了大量的注释,并按功能对代码进行了分块,以帮助大家理解代码逻辑。下面对这段代码进行讲解。首先我们把目光移到分割线1之上的代码,这段代码主要用于进行一些初始化操作。比如创建 c1、c2、c3 以及 pts、ms、mns 等变量,以及向 c1、c2、c3 中添加方法定义和类型转换代码。接下来是分割线1到分割线2之间的代码,这段代码用于为 public 级别的字段生成条件判断取值与赋值代码。这段代码不是很难看懂,就不多说了。继续向下看,分割线2和分隔线3之间的代码用于为定义在当前类中的方法生成判断语句,和方法调用语句。因为需要对方法重载进行校验,因此到这这段代码看起来有点复杂。不过耐心看一下,也不是很难理解。接下来是分割线3和分隔线4之间的代码,这段代码用于处理 getter、setter 以及以 is/has/can 开头的方法。处理方式是通过正则表达式获取方法类型(get/set/is/...),以及属性名。之后为属性名生成判断语句,然后为方法生成调用语句。最后我们再来看一下分隔线4以下的代码,这段代码通过 ClassGenerator 为刚刚生成的代码构建 Class 类,并通过反射创建对象。ClassGenerator 是 Dubbo 自己封装的,该类的核心是 toClass() 的重载方法 toClass(ClassLoader, ProtectionDomain),该方法通过 javassist 构建 Class。这里就不分析 toClass 方法了,大家请自行分析。
阅读 Wrapper 类代码需要对 javassist 框架有所了解。关于 javassist,大家如果不熟悉,请自行查阅资料,本节不打算介绍 javassist 相关内容。
好了,关于 Wrapper 类生成过程就分析到这。如果大家看的不是很明白,可以单独为 Wrapper 创建单元测试,然后单步调试。并将生成的代码拷贝出来,格式化后再进行观察和理解。
2.3.2 导出服务到本地
本节我们来看一下服务导出相关的代码,按照代码执行顺序,本节先来分析导出服务到本地的过程。相关代码如下:
/**
* always export injvm
*/
private void exportLocal(URL url) {
URL local = URLBuilder.from(url)
.setProtocol(LOCAL_PROTOCOL) // 设置协议头为 injvm
.setHost(LOCALHOST_VALUE)
.setPort(0)
.build();
// 创建 Invoker,并导出服务,这里的 protocol 会在运行时调用 InjvmProtocol 的 export 方法
Exporter<?> exporter = PROTOCOL.export(
PROXY_FACTORY.getInvoker(ref, (Class) interfaceClass, local));
exporters.add(exporter);
}
exportLocal 方法比较简单,创建一个新的 URL 并将协议头、主机名以及端口设置成新的值。然后创建 Invoker,并调用 InjvmProtocol 的 export 方法导出服务。下面我们来看一下 InjvmProtocol 的 export 方法都做了哪些事情。
@Override
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
return new InjvmExporter<T>(invoker, invoker.getUrl().getServiceKey(), exporterMap);
}
如上,InjvmProtocol 的 export 方法仅创建了一个 InjvmExporter,无其他逻辑。到此导出服务到本地就分析完了,接下来,我们继续分析导出服务到远程的过程。
2.3.3 导出服务到远程
与导出服务到本地相比,导出服务到远程的过程要复杂不少,其包含了服务导出与服务注册两个过程。这两个过程涉及到了大量的调用,比较复杂。
下面开始分析,我们把目光移动到 RegistryProtocol 的 export 方法上。
@Override
public <T> Exporter<T> export(final Invoker<T> originInvoker) throws RpcException {
// 获取注册中心 URL,以 zookeeper 注册中心为例,得到的示例 URL 如下:
// zookeeper://127.0.0.1:2181/com.alibaba.dubbo.registry.RegistryService?application=demo-provider&dubbo=2.0.2&export=dubbo%3A%2F%2F172.17.48.52%3A20880%2Fcom.alibaba.dubbo.demo.DemoService%3Fanyhost%3Dtrue%26application%3Ddemo-provider
URL registryUrl = getRegistryUrl(originInvoker);
// 获取已注册的服务提供者 URL,比如:
// dubbo://172.17.48.52:20880/com.alibaba.dubbo.demo.DemoService?anyhost=true&application=demo-provider&dubbo=2.0.2&generic=false&interface=com.alibaba.dubbo.demo.DemoService&methods=sayHello
URL providerUrl = getProviderUrl(originInvoker);
// 获取订阅 URL,比如:
// provider://172.17.48.52:20880/com.alibaba.dubbo.demo.DemoService?category=configurators&check=false&anyhost=true&application=demo-provider&dubbo=2.0.2&generic=false&interface=com.alibaba.dubbo.demo.DemoService&methods=sayHello
final URL overrideSubscribeUrl = getSubscribedOverrideUrl(providerUrl);
// 创建监听器
final OverrideListener overrideSubscribeListener = new OverrideListener(overrideSubscribeUrl, originInvoker);
// 向注册中心进行订阅 override 数据
overrideListeners.put(overrideSubscribeUrl, overrideSubscribeListener);
providerUrl = overrideUrlWithConfig(providerUrl, overrideSubscribeListener);
// --------------------------------✨ 分割线1 ✨-------------------------------------
// 导出服务
final ExporterChangeableWrapper<T> exporter = doLocalExport(originInvoker, providerUrl);
// url to registry
final Registry registry = getRegistry(originInvoker);
final URL registeredProviderUrl = getUrlToRegistry(providerUrl, registryUrl);
// decide if we need to delay publish
boolean register = providerUrl.getParameter(REGISTER_KEY, true);
if (register) {
// 向注册中心注册服务
register(registryUrl, registeredProviderUrl);
}
// register stated url on provider model
registerStatedUrl(registryUrl, registeredProviderUrl, register);
exporter.setRegisterUrl(registeredProviderUrl);
exporter.setSubscribeUrl(overrideSubscribeUrl);
notifyExport(exporter);
//Ensure that a new exporter instance is returned every time export
return new DestroyableExporter<>(exporter);
}
在以上操作中,除了创建并返回 DestroyableExporter 没什么难度外,其他几步操作都不是很简单。这其中,导出服务和注册服务是本章要重点分析的逻辑。下面先来分析 doLocalExport 方法的逻辑,如下:
private <T> ExporterChangeableWrapper<T> doLocalExport(final Invoker<T> originInvoker, URL providerUrl) {
String key = getCacheKey(originInvoker);
// 访问缓存bounds,如果没有创建并更新缓存bounds
return (ExporterChangeableWrapper<T>) bounds.computeIfAbsent(key, s -> {
// 创建 Invoker 为委托类对象
Invoker<?> invokerDelegate = new InvokerDelegate<>(originInvoker, providerUrl);
// 调用 protocol 的 export 方法导出服务
return new ExporterChangeableWrapper<>((Exporter<T>) protocol.export(invokerDelegate), originInvoker);
});
}
假设运行时协议为 dubbo,此处的 protocol 变量会在运行时加载 DubboProtocol,并调用 DubboProtocol 的 export 方法。所以,接下来我们目光转移到 DubboProtocol 的 export 方法上,相关分析如下:
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
URL url = invoker.getUrl();
// 获取服务标识,理解成服务坐标也行。由服务组名,服务名,服务版本号以及端口组成。比如:
// demoGroup/com.alibaba.dubbo.demo.DemoService:1.0.1:20880
String key = serviceKey(url);
// 创建 DubboExporter
DubboExporter<T> exporter = new DubboExporter<T>(invoker, key, exporterMap);
// 将 <key, exporter> 键值对放入缓存中
exporterMap.put(key, exporter);
// 本地存根相关代码
Boolean isStubSupportEvent = url.getParameter(STUB_EVENT_KEY, DEFAULT_STUB_EVENT);
Boolean isCallbackservice = url.getParameter(IS_CALLBACK_SERVICE, false);
if (isStubSupportEvent && !isCallbackservice) {
String stubServiceMethods = url.getParameter(STUB_EVENT_METHODS_KEY);
if (stubServiceMethods == null || stubServiceMethods.length() == 0) {
// 省略日志打印代码
}
}
// 启动服务器
openServer(url);
// 优化序列化
optimizeSerialization(url);
return exporter;
}
如上,我们重点关注 DubboExporter 的创建以及 openServer 方法,其他逻辑看不懂也没关系,不影响理解服务导出过程。另外,DubboExporter 的代码比较简单,就不分析了。下面分析 openServer 方法。
private void openServer(URL url) {
// 获取 host:port,并将其作为服务器实例的 key,用于标识当前的服务器实例
String key = url.getAddress();
//client can export a service which's only for server to invoke
boolean isServer = url.getParameter(IS_SERVER_KEY, true);
if (isServer) {
// 访问缓存
ProtocolServer server = serverMap.get(key);
if (server == null) {
synchronized (this) {
server = serverMap.get(key);
if (server == null) {
// 创建服务器实例
serverMap.put(key, createServer(url));
}
}
} else {
// 服务器已创建,则根据 url 中的配置重置服务器
server.reset(url);
}
}
}
如上,在同一台机器上(单网卡),同一个端口上仅允许启动一个服务器实例。若某个端口上已有服务器实例,此时则调用 reset 方法重置服务器的一些配置。考虑到篇幅问题,关于服务器实例重置的代码就不分析了。接下来分析服务器实例的创建过程。如下:
private ProtocolServer createServer(URL url) {
url = URLBuilder.from(url)
// send readonly event when server closes, it's enabled by default
.addParameterIfAbsent(CHANNEL_READONLYEVENT_SENT_KEY, Boolean.TRUE.toString())
// 添加心跳检测配置到 url 中
.addParameterIfAbsent(HEARTBEAT_KEY, String.valueOf(DEFAULT_HEARTBEAT))
// 添加编码解码器参数
.addParameter(CODEC_KEY, DubboCodec.NAME)
.build();
// 获取 server 参数,默认为 netty
String str = url.getParameter(SERVER_KEY, DEFAULT_REMOTING_SERVER);
// 通过 SPI 检测是否存在 server 参数所代表的 Transporter 拓展,不存在则抛出异常
if (str != null && str.length() > 0 && !ExtensionLoader.getExtensionLoader(Transporter.class).hasExtension(str)) {
throw new RpcException("Unsupported server type: " + str + ", url: " + url);
}
ExchangeServer server;
try {
// 创建 ExchangeServer
server = Exchangers.bind(url, requestHandler);
} catch (RemotingException e) {
throw new RpcException("Fail to start server(url: " + url + ") " + e.getMessage(), e);
}
// 获取 client 参数,可指定 netty,mina
str = url.getParameter(CLIENT_KEY);
if (str != null && str.length() > 0) {
// 获取所有的 Transporter 实现类名称集合,比如 supportedTypes = [netty, mina]
Set<String> supportedTypes = ExtensionLoader.getExtensionLoader(Transporter.class).getSupportedExtensions();
// 检测当前 Dubbo 所支持的 Transporter 实现类名称列表中,
// 是否包含 client 所表示的 Transporter,若不包含,则抛出异常
if (!supportedTypes.contains(str)) {
throw new RpcException("Unsupported client type: " + str);
}
}
return new DubboProtocolServer(server);
}
如上,createServer 包含三个核心的逻辑。第一是检测是否存在 server 参数所代表的 Transporter 拓展,不存在则抛出异常。第二是创建服务器实例。第三是检测是否支持 client 参数所表示的 Transporter 拓展,不存在也是抛出异常。两次检测操作所对应的代码比较直白了,无需多说。但创建服务器的操作目前还不是很清晰,我们继续往下看。
public static ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
if (url == null) {
throw new IllegalArgumentException("url == null");
}
if (handler == null) {
throw new IllegalArgumentException("handler == null");
}
url = url.addParameterIfAbsent(Constants.CODEC_KEY, "exchange");
// 获取 Exchanger,默认为 HeaderExchanger。
// 紧接着调用 HeaderExchanger 的 bind 方法创建 ExchangeServer 实例
return getExchanger(url).bind(url, handler);
}
上面代码比较简单,就不多说了。下面看一下 HeaderExchanger 的 bind 方法。
public ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
// 创建 HeaderExchangeServer 实例,该方法包含了多个逻辑,分别如下:
// 1. new HeaderExchangeHandler(handler)
// 2. new DecodeHandler(new HeaderExchangeHandler(handler))
// 3. Transporters.bind(url, new DecodeHandler(new HeaderExchangeHandler(handler)))
return new HeaderExchangeServer(Transporters.bind(url, new DecodeHandler(new HeaderExchangeHandler(handler))));
}
HeaderExchanger 的 bind 方法包含的逻辑比较多,但目前我们仅需关心 Transporters 的 bind 方法逻辑即可。该方法的代码如下:
public static RemotingServer bind(URL url, ChannelHandler... handlers) throws RemotingException {
if (url == null) {
throw new IllegalArgumentException("url == null");
}
if (handlers == null || handlers.length == 0) {
throw new IllegalArgumentException("handlers == null");
}
ChannelHandler handler;
if (handlers.length == 1) {
handler = handlers[0];
} else {
// 如果 handlers 元素数量大于1,则创建 ChannelHandler 分发器
handler = new ChannelHandlerDispatcher(handlers);
}
// 获取自适应 Transporter 实例,并调用实例方法
return getTransporter().bind(url, handler);
}
如上,getTransporter() 方法获取的 Transporter 是在运行时动态创建的,类名为 TransporterAdaptive,也就是自适应拓展类。TransporterAdaptive 会在运行时根据传入的 URL 参数决定加载什么类型的 Transporter,默认为 NettyTransporter。下面我们继续跟下去,这次分析的是 NettyTransporter 的 bind 方法。
public RemotingServer bind(URL url, ChannelHandler handler) throws RemotingException {
// 创建 NettyServer
return new NettyServer(url, handler);
}
这里仅有一句创建 NettyServer 的代码,无需多说,我们继续向下看。
public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
// 调用父类构造方法
super(ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME), ChannelHandlers.wrap(handler, url));
}
public AbstractServer(URL url, ChannelHandler handler) throws RemotingException {
// 调用父类构造方法,这里就不用跟进去了,没什么复杂逻辑
super(url, handler);
localAddress = getUrl().toInetSocketAddress();
// 获取 ip 和端口
String bindIp = getUrl().getParameter(Constants.BIND_IP_KEY, getUrl().getHost());
int bindPort = getUrl().getParameter(Constants.BIND_PORT_KEY, getUrl().getPort());
if (url.getParameter(ANYHOST_KEY, false) || NetUtils.isInvalidLocalHost(bindIp)) {
// 设置 ip 为 0.0.0.0
bindIp = ANYHOST_VALUE;
}
bindAddress = new InetSocketAddress(bindIp, bindPort);
// 获取最大可接受连接数
this.accepts = url.getParameter(ACCEPTS_KEY, DEFAULT_ACCEPTS);
this.idleTimeout = url.getParameter(IDLE_TIMEOUT_KEY, DEFAULT_IDLE_TIMEOUT);
try {
// 调用模板方法 doOpen 启动服务器
doOpen();
if (logger.isInfoEnabled()) {
logger.info("Start " + getClass().getSimpleName() + " bind " + getBindAddress() + ", export " + getLocalAddress());
}
} catch (Throwable t) {
throw new RemotingException(url.toInetSocketAddress(), null, "Failed to bind " + getClass().getSimpleName()
+ " on " + getLocalAddress() + ", cause: " + t.getMessage(), t);
}
executor = executorRepository.createExecutorIfAbsent(url);
}
上面代码多为赋值代码,不需要多讲。我们重点关注 doOpen 抽象方法,该方法需要子类实现。下面回到 NettyServer 中。
protected void doOpen() throws Throwable {
NettyHelper.setNettyLoggerFactory();
// 创建 boss 和 worker 线程池
ExecutorService boss = Executors.newCachedThreadPool(new NamedThreadFactory("NettyServerBoss", true));
ExecutorService worker = Executors.newCachedThreadPool(new NamedThreadFactory("NettyServerWorker", true));
ChannelFactory channelFactory = new NioServerSocketChannelFactory(boss, worker, getUrl().getPositiveParameter(IO_THREADS_KEY, Constants.DEFAULT_IO_THREADS));
// 创建 ServerBootstrap
bootstrap = new ServerBootstrap(channelFactory);
final NettyHandler nettyHandler = new NettyHandler(getUrl(), this);
channels = nettyHandler.getChannels();
bootstrap.setOption("child.tcpNoDelay", true);
bootstrap.setOption("backlog", getUrl().getPositiveParameter(BACKLOG_KEY, Constants.DEFAULT_BACKLOG));
// 设置 PipelineFactory
bootstrap.setPipelineFactory(() -> {
NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyServer.this);
ChannelPipeline pipeline = Channels.pipeline();
pipeline.addLast("decoder", adapter.getDecoder());
pipeline.addLast("encoder", adapter.getEncoder());
pipeline.addLast("handler", nettyHandler);
return pipeline;
});
// 绑定到指定的 ip 和端口上
channel = bootstrap.bind(getBindAddress());
}
以上就是 NettyServer 创建的过程,熟悉netty的应该都比较容易理解,dubbo 2.7.6使用的 NettyServer 是基于 netty 4.1.35.Final 版本实现的。
本节内容先到这里,接下来分析服务导出的另一块逻辑 — 服务注册。
2.3.4 服务注册
节我们来分析服务注册过程,服务注册操作对于 Dubbo 来说不是必需的,通过服务直连的方式就可以绕过注册中心。但通常我们不会这么做,直连方式不利于服务治理,仅推荐在测试服务时使用。对于 Dubbo 来说,注册中心虽不是必需,但却是必要的。因此,关于注册中心以及服务注册相关逻辑,我们也需要搞懂。
本节内容以 Zookeeper 注册中心作为分析目标,其他类型注册中心大家可自行分析。下面从服务注册的入口方法开始分析,我们把目光再次移到 RegistryProtocol 的 export 方法上。如下:
public <T> Exporter<T> export(final Invoker<T> originInvoker) throws RpcException {
// ${导出服务}
// 省略其他代码
if (register) {
// 注册服务
register(registryUrl, registeredProviderUrl);
}
// register stated url on provider model
registerStatedUrl(registryUrl, registeredProviderUrl, register);
// 省略部分代码
notifyExport(exporter);
return new DestroyableExporter<>(exporter);
}
进入register代码:
private void register(URL registryUrl, URL registeredProviderUrl) {
// 获取 Registry
Registry registry = registryFactory.getRegistry(registryUrl);
// 注册服务
registry.register(registeredProviderUrl);
}
register 方法包含两步操作,第一步是获取注册中心实例,第二步是向注册中心注册服务。接下来分两节内容对这两步操作进行分析。
2.3.4.1 创建注册中心
本节内容以 Zookeeper 注册中心为例进行分析。下面先来看一下 getRegistry 方法的源码,这个方法由 AbstractRegistryFactory 实现。如下:
public Registry getRegistry(URL url) {
if (destroyed.get()) {
return DEFAULT_NOP_REGISTRY;
}
url = URLBuilder.from(url)
.setPath(RegistryService.class.getName())
.addParameter(INTERFACE_KEY, RegistryService.class.getName())
.removeParameters(EXPORT_KEY, REFER_KEY)
.build();
String key = createRegistryCacheKey(url);
// Lock the registry access process to ensure a single instance of the registry
LOCK.lock();
try {
// 访问缓存
Registry registry = REGISTRIES.get(key);
if (registry != null) {
return registry;
}
// 缓存未命中,通过 spi/ioc 创建 Registry 实例
registry = createRegistry(url);
if (registry == null) {
throw new IllegalStateException("Can not create registry " + url);
}
// 写入缓存
REGISTRIES.put(key, registry);
return registry;
} finally {
// Release the lock
LOCK.unlock();
}
}
如上,getRegistry 方法先访问缓存,缓存未命中则调用 createRegistry 创建 Registry,然后写入缓存。这里的 createRegistry 是一个模板方法,由具体的子类实现。因此,下面我们到 ZookeeperRegistryFactory 中探究一番。
public class ZookeeperRegistryFactory extends AbstractRegistryFactory {
// zookeeperTransporter 由 SPI 在运行时注入,类型为 ZookeeperTransporter$Adaptive
private ZookeeperTransporter zookeeperTransporter;
public void setZookeeperTransporter(ZookeeperTransporter zookeeperTransporter) {
this.zookeeperTransporter = zookeeperTransporter;
}
@Override
public Registry createRegistry(URL url) {
// 创建 ZookeeperRegistry
return new ZookeeperRegistry(url, zookeeperTransporter);
}
}
ZookeeperRegistryFactory 的 createRegistry 方法仅包含一句代码,无需解释,继续跟下去。
public ZookeeperRegistry(URL url, ZookeeperTransporter zookeeperTransporter) {
super(url);
if (url.isAnyHost()) {
throw new IllegalStateException("registry address == null");
}
// 获取组名,默认为 dubbo
String group = url.getParameter(Constants.GROUP_KEY, DEFAULT_ROOT);
if (!group.startsWith(Constants.PATH_SEPARATOR)) {
// group = "/" + group
group = Constants.PATH_SEPARATOR + group;
}
this.root = group;
// 创建 Zookeeper 客户端,默认为 CuratorZookeeperTransporter
zkClient = zookeeperTransporter.connect(url);
// 添加状态监听器
zkClient.addStateListener(new StateListener() {
@Override
public void stateChanged(int state) {
if (state == RECONNECTED) {
try {
recover();
} catch (Exception e) {
logger.error(e.getMessage(), e);
}
}
}
});
}
在上面的代码代码中,我们重点关注 ZookeeperTransporter 的 connect 方法调用,这个方法用于创建 Zookeeper 客户端。创建好 Zookeeper 客户端,意味着注册中心的创建过程就结束了。接下来,再来分析一下 Zookeeper 客户端的创建过程。
前面说过,这里的 zookeeperTransporter 类型为自适应拓展类,因此 connect 方法会在被调用时决定加载什么类型的 ZookeeperTransporter 拓展,默认为 CuratorZookeeperTransporter。下面我们到 CuratorZookeeperTransporter 中看一看。
public ZookeeperClient connect(URL url) {
// 创建 CuratorZookeeperClient
return new CuratorZookeeperClient(url);
}
继续向下看。
public class CuratorZookeeperClient extends AbstractZookeeperClient<CuratorWatcher> {
private final CuratorFramework client;
public CuratorZookeeperClient(URL url) {
super(url);
try {
// 创建 CuratorFramework 构造器
CuratorFrameworkFactory.Builder builder = CuratorFrameworkFactory.builder()
.connectString(url.getBackupAddress())
.retryPolicy(new RetryNTimes(1, 1000))
.connectionTimeoutMs(5000);
String authority = url.getAuthority();
if (authority != null && authority.length() > 0) {
builder = builder.authorization("digest", authority.getBytes());
}
// 构建 CuratorFramework 实例
client = builder.build();
// 添加监听器
client.getConnectionStateListenable().addListener(new ConnectionStateListener() {
@Override
public void stateChanged(CuratorFramework client, ConnectionState state) {
if (state == ConnectionState.LOST) {
CuratorZookeeperClient.this.stateChanged(StateListener.DISCONNECTED);
} else if (state == ConnectionState.CONNECTED) {
CuratorZookeeperClient.this.stateChanged(StateListener.CONNECTED);
} else if (state == ConnectionState.RECONNECTED) {
CuratorZookeeperClient.this.stateChanged(StateListener.RECONNECTED);
}
}
});
// 启动客户端
client.start();
} catch (Exception e) {
throw new IllegalStateException(e.getMessage(), e);
}
}
}
CuratorZookeeperClient 构造方法主要用于创建和启动 CuratorFramework 实例。以上基本上都是 Curator 框架的代码,大家如果对 Curator 框架不是很了解,可以参考 Curator 官方文档。
本节分析了 ZookeeperRegistry 实例的创建过程,整个过程并不是很复杂。大家在看完分析后,可以自行调试,以加深理解。现在注册中心实例创建好了,接下来要做的事情是向注册中心注册服务,我们继续往下看。
2.3.4.2 节点创建
以 Zookeeper 为例,所谓的服务注册,本质上是将服务配置数据写入到 Zookeeper 的某个路径的节点下。为了让大家有一个直观的了解,下面我们将 Dubbo 的 demo 跑起来,然后通过 Zookeeper 可视化客户端 ZooInspector 查看节点数据。如下:
从上图中可以看到 com.alibaba.dubbo.demo.DemoService 这个服务对应的配置信息(存储在 URL 中)最终被注册到了 /dubbo/com.alibaba.dubbo.demo.DemoService/providers/ 节点下。搞懂了服务注册的本质,那么接下来我们就可以去阅读服务注册的代码了。服务注册的接口为 register(URL),这个方法定义在 FailbackRegistry 抽象类中。代码如下:
public void register(URL url) {
super.register(url);
failedRegistered.remove(url);
failedUnregistered.remove(url);
try {
// 模板方法,由子类实现
doRegister(url);
} catch (Exception e) {
Throwable t = e;
// 获取 check 参数,若 check = true 将会直接抛出异常
boolean check = getUrl().getParameter(Constants.CHECK_KEY, true)
&& url.getParameter(Constants.CHECK_KEY, true)
&& !Constants.CONSUMER_PROTOCOL.equals(url.getProtocol());
boolean skipFailback = t instanceof SkipFailbackWrapperException;
if (check || skipFailback) {
if (skipFailback) {
t = t.getCause();
}
throw new IllegalStateException("Failed to register");
} else {
logger.error("Failed to register");
}
// 记录注册失败的链接
failedRegistered.add(url);
}
}
protected abstract void doRegister(URL url);
如上,我们重点关注 doRegister 方法调用即可,其他的代码先忽略。doRegister 方法是一个模板方法,因此我们到 FailbackRegistry 子类 ZookeeperRegistry 中进行分析。如下:
protected void doRegister(URL url) {
try {
// 通过 Zookeeper 客户端创建节点,节点路径由 toUrlPath 方法生成,路径格式如下:
// /${group}/${serviceInterface}/providers/${url}
// 比如
// /dubbo/org.apache.dubbo.DemoService/providers/dubbo%3A%2F%2F127.0.0.1......
zkClient.create(toUrlPath(url), url.getParameter(Constants.DYNAMIC_KEY, true));
} catch (Throwable e) {
throw new RpcException("Failed to register...");
}
}
如上,ZookeeperRegistry 在 doRegister 中调用了 Zookeeper 客户端创建服务节点。节点路径由 toUrlPath 方法生成,该方法逻辑不难理解,就不分析了。接下来分析 create 方法,如下:
public void create(String path, boolean ephemeral) {
if (!ephemeral) {
// 如果要创建的节点类型非临时节点,那么这里要检测节点是否存在
if (checkExists(path)) {
return;
}
}
int i = path.lastIndexOf('/');
if (i > 0) {
// 递归创建上一级路径
create(path.substring(0, i), false);
}
// 根据 ephemeral 的值创建临时或持久节点
if (ephemeral) {
createEphemeral(path);
} else {
createPersistent(path);
}
}
上面方法先是通过递归创建当前节点的上一级路径,然后再根据 ephemeral 的值决定创建临时还是持久节点。createEphemeral 和 createPersistent 这两个方法都比较简单,这里简单分析其中的一个。如下:
public void createEphemeral(String path) {
try {
// 通过 Curator 框架创建节点
client.create().withMode(CreateMode.EPHEMERAL).forPath(path);
} catch (NodeExistsException e) {
} catch (Exception e) {
throw new IllegalStateException(e.getMessage(), e);
}
}
好了,到此关于服务注册的过程就分析完了。整个过程可简单总结为:先创建注册中心实例,之后再通过注册中心实例注册服务。
3.总结
本篇文章详细分析了 Dubbo 服务导出过程,包括配置检测,URL 组装,Invoker 创建过程、导出服务以及注册服务等等。篇幅比较大,需要大家耐心阅读。本篇文章先就到这,如果文章有不妥错误之处,希望大家能够进行反馈或修正。
4.参考资料
本文参考于Dubbo官网,详情以官网最新文档为准。