定制个机器人帮你和Ta聊天

自动聊天示例

聊天1:

user: 在吗?
bot: 在
user: 在干嘛呢?
bot: 看电视
user: 看啥电视呀
bot: 活色生香
user: 很好看吗?
bot: 特搞笑
user: 你在哪里呀?
bot: 家里
user: 家里就你一个人嘛?
bot: 我喜欢一个人玩
user: 那我过来找你?
bot: 不可以,乖乖上班去

聊天2:

Q: 在吗?
A: 在
Q: 干嘛呢?
A: 没事
Q: 陪我去逛街嘛?
A: 嗯
Q: 你在打游戏?
A: 没有
Q: 那去不去?
A: 去

这是基于200万聊天记录训练出来的,你可以用自己和女朋友的记录训练了试试效果 :P

至于微信机器人怎么用,你可以 GitHub 搜搜看哈

项目说明

chatbot 是一个通过已知对话数据集快速生成回答的 Go 问答引擎。

为啥会有 chatbot 项目呢?

好多年前,当我们需要一个聊天机器人的时候,我是先用了 ChatterBot,但是使用下来,我们的1.2亿对话语料训练后的模型回答一个问题需要21秒左右,实在没法接受。仔细看了 ChatterBot 源码之后,我用 Go 重新实现了一个,并用 go-zero 的 MapReduce 框架做了并行优化,结果我们一个回答平均耗时大概18毫秒。

国庆假期,我有点空闲时间,所以就把这个项目整理了开源出来,一是给大家一个实际的 go-zero 的 MapReduce 示例;二是也提供大家一个闲聊机器人的项目玩玩。

BTW:后续我可能会开源智能客服机器人的项目,可以关注我的github:

https://github.com/kevwan

代码目录和命令行使用说明

bot

问答引擎,可以自定义自己的匹配算法

cli

  • train

    训练给定的问答数据并生成 .gob 文件

    • -d 读取指定目录下所有 jsonyaml 语料文件
    • -i 读取指定的 jsonyaml 语料文件,多个文件用逗号分割
    • -o 指定输出的 .gob 文件
    • -m 定时打印内存使用情况
  • ask

    一个示例的问答命令行工具

    • -v verbose
    • -c 训练好的 .gob 文件
    • -t 数据几个可能的答案

数据格式

如果你有语料数据,可以自行整理用来训练。

数据格式可以通过 yaml 或者 json 文件提供,参考 https://github.com/kevwan/chatterbot-corpus 里的格式。大致如下:

categories:
- AI
conversations:
- - 什么是ai
  - 人工智能是工程和科学的分支,致力于构建具有思维的机器。
- - 你是什么语言编写的
  - Python
- - 你听起来像机器
  - 是的,我受到造物者的启发
- - 你是一个人工智能
  - 那是我的名字。

致谢

go-zero - https://github.com/zeromicro/go-zero

go-zerocore/mr 包的 MapReduce 实现使 chatbot 的回答效率得到了巨大的提升!

ChatterBot - https://github.com/gunthercox/ChatterBot

最早我是使用 ChatterBot 的,但由于回答太慢,所有后来只能自己实现了,感谢 ChatterBot,非常棒的项目!

项目地址

https://github.com/kevwan/chatbot

欢迎使用并 star 支持!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容