医学统计学_从入门到放弃1

  • 连续型变量
    血压升高、住院天数、术中出血量
  • 临床医学研究
    干预性研究、观察性研究、诊断准确性试验
    基于前瞻性(回顾性)资料的研究
    系统评价与Meta分析
    基于开放数据库的研究
临床研究分类

分类法则

随机对照试验

队列研究

由因及果,一般只是确定一个原因。而由果及因,可以推出好几个原因。
横断面研究:(因和果同时暴露)门诊肥胖的女性同时伴有关节炎,到底是肥胖引起的关节炎,还是关节炎引起的肥胖呢?

双门设计

单门设计

在医学统计学中要学会三种随机抽样:简单随机化、区组随机化、分层随机化。
简单随机化:R中的sample()函数

卡方检验
  • 假设检验
    第一步:假定二者无区别,制订小概率事件的概率标准,a=0.05(5%)
    第二步:计算p值
    第三步:根据p值下结论

  • t检验:针对小样本
    当n为无限大时,t分布即是正态分布。

  1. 单样本t检验
    目的:检验一个变量的总体均值和某个检测值之间是否存在显著差异
    例如:⑴检验某专业毕业生平均收入是否符合该校毕业生的平均收入标准
    ⑵检验一批产品的平均质量是否符合国家规定的质量标准

案例:已知某试卷全国考生考试平均分数为85分,某学校随机抽取15人参加考试,得平均分数,问,该学校全体学生考试得分能否达到全国平均水平?

自由度df=样本容量-1


t检验

样本
score <- c(78,82,83,79,81,77,84,75,86,82,80,78,79,82,81)
sample <- data.frame(score)
View(sample)
#原假设H0:μ=85  备选假设H0:μ!=85
t.test(sample,alternative='two.side',mu=85)
检验结果

说明不支持原假设,该学校全体学生考试得分并未达到全国平均水平。

  1. 两独立样本t检验
  • 目的:用两个来自不同总体的独立样本,来推断这两个总体的均值是否存在显著差异。
  • 例如:⑴比较男女毕业生的平均收入是否存在显著差异
    ⑵比较男女的平均身高是否存在显著差异
  • 案例:某校为测评2教师(教师A,教师B)教学水平,将50名学生随机分为2组,经过一段时间教学后,进行同一份试卷考试,各自得分汇总后,试判断两教师教学水平有无差异?
    先建表格:
faculty <- rep(1,25)
score <- c(83,75,78,81,80,80,83,80,79,78,80,76,80,77,72,82,76,87,81,85,65,81,80,93,70)
df1 <- data.frame(faculty,score)
faculty <- rep(2,25)
score <- c(77,91,67,98,94,90,79,90,89,81,71,74,76,91,76,95,97,80,74,99,73,100,75,73,91)
df2 <- data.frame(faculty,score)
newdata <- rbind(df1,df2)
#注意:在按行合并的时候,要保证两个表格的行名一致
df1

df2
t.test(score~faculty,newdata,var.equal=TRUE)

这里的var.equal=TRUE是假设方差齐性,即两样本方差相等

两独立样本t检验

'大同小异',所以表示两样本均数不同,有差异,教师2的水平优于教师1。
还有一种方式:

t.test(df1$score,df2$score,var.equal=TRUE)
  1. 配对样本t检验
    目的:检验一个对象在某个时间点前后的均值是否存在显著差异
    例如:⑴一组病人在治疗前后的健康状况
    ⑵一群销售人员在接受销售培训前后的业绩情况
    案例:一群考生在接受加强复习培训后的成绩与之前是否有差异
    先建立数据
score.before <- c(78,81,70,79,77,78,85,82,88,80,80,81,76,81,87,76,79,79,87,80,78,87)
score.after <- c(87,87,81,87,88,80,86,85,85,89,70,81,80,97,95,77,90,90,86,90,79,78)
data <- data.frame(score.before,score.after)
View(data)
data
t.test(data$score.before,data$score.after,paired=TRUE)
配对样本t检验

实际上相当于两者相减与0作比较,判断有无差异。结果表示培训后成绩要优秀一些。
相当于:

t.test(data$score.after-data$score.before,mu=0)

review:
Q1:t检验能解决什么样的问题?
⑴检验事物的某一变量是否符合某项标准
⑵检验两个独立的事物之间是否有显著差异
⑶检验一个对象在某个时间点前后是否有显著差异
Q2:t检验使用的前提条件是什么?
总体标准差σ未知,小样本(容量n<30),总体服从正态分布
即:

  • 独立
  • 正态
  • 方差齐性
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容