Block初探
blcok的分类
- 不同关键字修饰的变量
auto
和static
在OC中有个默认的关键字auto,在我们创建局部变量的时候,会默认在局部变量前加上auto关键字进行修饰。auto关键字的含义就是它所修饰的变量会自动释放,也表示着它所修饰的变量会存放到栈空间,系统会自动对其进行释放。 -
__NSGlobalBlock__
全局block,block没有访问外部变量,访问全局的变量,访问静态变量的block都是全局blcok
static int a = 10;
static NSString *s1 = @"str1";
void (^globalBlock1)(void) = ^{
NSLog(@"-----global block");
};
void (^globalBlock2)(void) = ^{
NSLog(@"-----global block:%d",a);
};
void (^globalBlock3)(void) = ^{
NSLog(@"-----global block:%@",s1);
};
// 打印结果如下
<__NSGlobalBlock__: 0x1043a7068>
<__NSGlobalBlock__: 0x1043a7088>
<__NSGlobalBlock__: 0x1043a70a8>
-
__NSStackBlock__
栈block,block访问外部auto变量就是栈block
auto int b = 11;
auto NSString *s = @"str";
NSLog(@"%@%@",^{
NSLog(@"name is:%d",b);
},^{
NSLog(@"name is:%@",s);
});
// 打印结果如下
<__NSStackBlock__: 0x7ffeeb858c40>
<__NSStackBlock__: 0x7ffeeb858c18>
-
__NSMallocBlock__
堆block,栈block进行copy操作之后就变为堆block
auto int b = 11;
self.block = ^{
NSLog(@"name is:%d",b);
};
NSLog(@"%@----%@",self.block,
[^{
NSLog(@"name is:%d",b);
} copy]
);
// 打印结果如下
<__NSMallocBlock__: 0x60000096af40>
----<__NSMallocBlock__: 0x60000096a4f0>
在ARC环境下,编译器会根据情况自动将栈上的block复制到堆上,比如以下情况
block作为函数返回值时
将block赋值给__strong指针时
block作为Cocoa API中方法名含有usingBlock的方法参数时
block作为GCD API的方法参数时
block的变量捕获(capture)
- 我们创建一个带外部参数的block,查看对应的结构
int c = 15;
int main(int argc, const char * argv[]) {
@autoreleasepool {
auto int a = 10;
static int b = 20;
NSObject *obj = [[NSObject alloc] init];
void(^testBlock)(void) = ^{
NSLog(@"------- block---arg1:%d---arg2:%d---arg3:%d---arg4:%@",a,b,c,obj);
};
}
return 0;
}
- 查看有外部参数block的cpp文件,找到main函数,去掉一些强转代码,得到下面代码
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
auto int a = 10;
static int b = 20;
NSObject *obj = objc_msgSend)((id)(objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"));
void(*testBlock)(void) = (&__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA, a, &b, obj, 570425344));
}
return 0;
}
- 查看
__main_block_impl_0
的结构
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int a;
int *b;
NSObject *obj;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, int *_b, NSObject *_obj, int flags=0) : a(_a), b(_b), obj(_obj) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
---------------------------------------------------------------------------
struct __block_impl {
void *isa; //isa指针,可以看出Block其实就是一个OC对象
int Flags;
int Reserved;
void *FuncPtr; //函数内存地址
};
---------------------------------------------------------------------------
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
- 为了保证block内部能够正常访问外部的变量,block有个变量捕获机制。
- auto变量的捕获
通过对上述代码的观察发现auto变量auto int a在struct__main_block_impl_0
是以int a;的方式保存的。 - static变量的捕获
static变量static int b在struct__main_block_impl_0
是以int *b;的方式保存的。 - 对象类型的auto变量
当block内部访问了对象类型的auto变量时
如果block是在栈上,将不会对auto变量产生强引用
如果block被拷贝到堆上
会调用block内部的copy函数
copy函数内部会调用_Block_object_assign函数
_Block_object_assign函数会根据auto变量的修饰符(__strong、 __weak、__unsafe_unretained)做出相应的操作,形成强引用(retain)或者弱引用
如果block从堆上移除
会调用block内部的dispose函数
dispose函数内部会调用_Block_object_dispose函数
_Block_object_dispose函数会自动释放引用的auto变量(release)
- auto变量的捕获
- block类型的总结
block的类型 | block执行的操作 |
---|---|
_NSGlobalBlock_ | 没有访问auto类型的变量 |
_NSStackBlock_ | 访问了auto类型的变量 |
_NSMallocBlock_ | _NSStackBlock_类型的block执行了copy操作 |
被__block
修饰的变量
- 当变量被__block修饰之后,在block结构体里面就不再是简单的值传递了,而是会将变量包装成一个
__Block_byref_obj_0
结构体,其结构如下
struct __Block_byref_obj_0 {
void *__isa;
__Block_byref_obj_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
NSObject *obj;
};
// 对应的值
__Block_byref_obj_0 obj = {(void*)0,
(__Block_byref_obj_0 *)&obj,
33554432, sizeof(__Block_byref_obj_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131,
((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("new"))};
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
Block的循环引用
- 在使用block的时候会遇到以下循环引用的问题,vc强引用着block,block强引用着vc,导致vc无法释放,不会执行dealloc。
typedef void(^block)(void);
@interface ViewController ()
@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) block block;
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
self.name = @"xq";
self.block = ^{
NSLog(@"name is:%@",self.name);
};
self.block();
}
- (void)dealloc
{
NSLog(@"%s",__func__);
}
@end
-
知道产生了循环引用的原因,就可以通过一个弱引用的weakSelf指向self
- 所以我们只需要将上面的代码修改成如下,dealloc就会正常执行了
__weak typeof(self) weakSelf = self;
self.block = ^{
NSLog(@"name is:%@",weakSelf.name);
};
// dealloc执行打印
-[ViewController dealloc]
- 但是我们将代码改成下面这样,又会出现问题了,由于vc已经释放了,所以再调用.name就为空
self.block = ^{
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"name is:%@",weakSelf.name);
});
};
// 打印结果
-[ViewController dealloc]
name is:(null)
- 所以我们需要在block里面对weakSelf再进行一次强引用,这就是所谓
weak-strong dance
self.block = ^{
__strong typeof(weakSelf) strongSelf = weakSelf;//在arc中默认是strong的所以__strong是可以省略的
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"name is:%@",strongSelf.name);
});
};
// 打印结果
name is:xq
-[ViewController dealloc]
- 其他解决循环引用的方法
- __block,这种方法的缺点是需要依赖block的调用,如果block不调用还是会有循环引用
__block ViewController *vc = self;
self.block = ^{
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"name is:%@",vc.name);
vc = nil;
});
};
self.block();
- 传值,通过将self作为参数传递给block
typedef void(^block)(ViewController *);
self.block = ^(ViewController *vc){
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"name is:%@",vc.name);
});
};
self.block(self);
Block的底层原理
clang研究blcok
- 创建一个block,通过clang来观察下它的底层实现
NSString *name = @"xq";
void (^block)(void) = ^{
NSLog(@"name is %@",name);
};
block();
- clang后得到的代码如下
void (*block)(void) = ((void (*)())&__ViewController__viewDidLoad_block_impl_0((void *)__ViewController__viewDidLoad_block_func_0, &__ViewController__viewDidLoad_block_desc_0_DATA, name, 570425344));
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
//去掉一些强转
block = __ViewController__viewDidLoad_block_impl_0(__ViewController__viewDidLoad_block_func_0, __ViewController__viewDidLoad_block_desc_0_DATA,name, 570425344)
block-> FuncPtr(block)
-
__ViewController__viewDidLoad_block_impl_0
的结构
struct __ViewController__viewDidLoad_block_impl_0 {
struct __block_impl impl;
struct __ViewController__viewDidLoad_block_desc_0* Desc;
NSString *name;
// 结构体的构造函数
__ViewController__viewDidLoad_block_impl_0(void *fp, struct __ViewController__viewDidLoad_block_desc_0 *desc, NSString *_name, int flags=0) : name(_name) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
-
__block_impl
的结构
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
-
__ViewController__viewDidLoad_block_desc_0
的结构
static struct __ViewController__viewDidLoad_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __ViewController__viewDidLoad_block_impl_0*, struct __ViewController__viewDidLoad_block_impl_0*);
void (*dispose)(struct __ViewController__viewDidLoad_block_impl_0*);
} __ViewController__viewDidLoad_block_desc_0_DATA = { 0, sizeof(struct __ViewController__viewDidLoad_block_impl_0), __ViewController__viewDidLoad_block_copy_0, __ViewController__viewDidLoad_block_dispose_0};
// 因为我们捕获的变量是对象,所以需要对它的内存进行处理
static void __ViewController__viewDidLoad_block_copy_0(struct __ViewController__viewDidLoad_block_impl_0*dst, struct __ViewController__viewDidLoad_block_impl_0*src) {_Block_object_assign((void*)&dst->name, (void*)src->name, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static void __ViewController__viewDidLoad_block_dispose_0(struct __ViewController__viewDidLoad_block_impl_0*src) {_Block_object_dispose((void*)src->name, 3/*BLOCK_FIELD_IS_OBJECT*/);}
-
__ViewController__viewDidLoad_block_func_0
就是block要执行的任务
static void __ViewController__viewDidLoad_block_func_0(struct __ViewController__viewDidLoad_block_impl_0 *__cself) {
NSString *name = __cself->name; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_13_ztl_wzln5357kbjwzx2pgrrw0000gp_T_ViewController_d580cd_mi_1,name);
}
- 总结 可以看到block底层是一个结构体,也是一个对象,通过构造函数将block的任务当做函数
fp
传递给结构体,再通过使用fp()
调用,这也是外界调用block要用block()的原因,其本质就是函数的执行,所以block又叫匿名函数,对外界变量的捕获,当变量没有用block修饰的时候,会在block内部生成一个同名的变量并将外界变量的值传递进来,而当变量被__block修饰的时候,发现对象会被包装成__Block_byref_xxx_0
的结构体,根据传入变量的类型会有不同的结构
struct __Block_byref_obj_0 {
void *__isa;
__Block_byref_obj_0 *__forwarding;
int __flags;
int __size;
//对象类型会有这两个方法
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
NSObject *obj;
};
汇编研究block的底层实现
-
在blcok的开始处打下断点
-
进到汇编调试界面
- 加符号断点
objc_retainBlock
-
进到符号断点
-
继续往下执行
- 最终会进入到
libsystem_blocks.dylib
的_Block_copy
- 通过打印寄存器我们也可以发现执行完
_Block_copy
之后,block由栈block转换为堆block - 所以我们要研究block就要研究
libsystem_blocks.dylib
,获取它的源码
libsystem_blocks.dylib
- 通过观察源码发现,block的底层其实是一个
Block_layout
的结构体其内部结构为
struct Block_layout {
void *isa;
volatile int32_t flags; // contains ref count
int32_t reserved;
BlockInvokeFunction invoke;
struct Block_descriptor_1 *descriptor;
// imported variables
};
- isa:指向block的类型
- flags:标识符,按bit位表示一些block的附加信息,类似于isa中的位域,其中flags的种类有以下几种,我们重点关注BLOCK_HAS_COPY_DISPOSE 和 BLOCK_HAS_SIGNATURE。 BLOCK_HAS_COPY_DISPOSE 决定是否有 Block_descriptor_2。BLOCK_HAS_SIGNATURE 决定是否有 Block_descriptor_3
// Values for Block_layout->flags to describe block objects
enum {
BLOCK_DEALLOCATING = (0x0001), // runtime
BLOCK_REFCOUNT_MASK = (0xfffe), // runtime
BLOCK_NEEDS_FREE = (1 << 24), // runtime
BLOCK_HAS_COPY_DISPOSE = (1 << 25), // compiler
BLOCK_HAS_CTOR = (1 << 26), // compiler: helpers have C++ code
BLOCK_IS_GC = (1 << 27), // runtime
BLOCK_IS_GLOBAL = (1 << 28), // compiler
BLOCK_USE_STRET = (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
BLOCK_HAS_SIGNATURE = (1 << 30), // compiler
BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31) // compiler
};
- reserved:保留信息
- invoke:是一个函数指针,指向block中的代码
- descriptor:block的附加信息,比如保留变量数、block的大小、copy或dispose的辅助函数指针,block的签名。有三类
Block_descriptor_1是必选的
Block_descriptor_2 和 Block_descriptor_3都是可选的
#define BLOCK_DESCRIPTOR_1 1
struct Block_descriptor_1 {
uintptr_t reserved;
uintptr_t size;
};
#define BLOCK_DESCRIPTOR_2 1
struct Block_descriptor_2 {
// requires BLOCK_HAS_COPY_DISPOSE
BlockCopyFunction copy;
BlockDisposeFunction dispose;
};
#define BLOCK_DESCRIPTOR_3 1
struct Block_descriptor_3 {
// requires BLOCK_HAS_SIGNATURE
const char *signature;
const char *layout; // contents depend on BLOCK_HAS_EXTENDED_LAYOUT
};
- 上面块描述器的构造函数如下,其中Block_descriptor_2和Block_descriptor_3都是通过Block_descriptor_1的地址内存平移得到的
#if 0
static struct Block_descriptor_1 * _Block_descriptor_1(struct Block_layout *aBlock)
{
return aBlock->descriptor;
}
#endif
// Block 的描述 : copy 和 dispose 函数
static struct Block_descriptor_2 * _Block_descriptor_2(struct Block_layout *aBlock)
{
if (! (aBlock->flags & BLOCK_HAS_COPY_DISPOSE)) return NULL;
uint8_t *desc = (uint8_t *)aBlock->descriptor;
desc += sizeof(struct Block_descriptor_1);
return (struct Block_descriptor_2 *)desc;
}
// Block 的描述 : 签名相关
static struct Block_descriptor_3 * _Block_descriptor_3(struct Block_layout *aBlock)
{
if (! (aBlock->flags & BLOCK_HAS_SIGNATURE)) return NULL;
uint8_t *desc = (uint8_t *)aBlock->descriptor;
desc += sizeof(struct Block_descriptor_1);
if (aBlock->flags & BLOCK_HAS_COPY_DISPOSE) {
desc += sizeof(struct Block_descriptor_2);
}
return (struct Block_descriptor_3 *)desc;
}
-
_Block_copy
的实现
void *_Block_copy(const void *arg) {
struct Block_layout *aBlock;
if (!arg) return NULL;
// The following would be better done as a switch statement
aBlock = (struct Block_layout *)arg;
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
latching_incr_int(&aBlock->flags);
return aBlock;
}
else if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock;
}
else {
// Its a stack block. Make a copy.
struct Block_layout *result =
(struct Block_layout *)malloc(aBlock->descriptor->size);
if (!result) return NULL;
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
#if __has_feature(ptrauth_calls)
// Resign the invoke pointer as it uses address authentication.
result->invoke = aBlock->invoke;
#endif
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING); // XXX not needed
result->flags |= BLOCK_NEEDS_FREE | 2; // logical refcount 1
_Block_call_copy_helper(result, aBlock);
// Set isa last so memory analysis tools see a fully-initialized object.
result->isa = _NSConcreteMallocBlock;
return result;
}
}
-
_Block_copy
会对外界传入的blcok先做判断,如果需要释放或者是全局block直接返回block,需要释放的会对flag做一些处理,如果是栈block就会在堆中开辟一块空间,将传进来的blcok拷贝到开辟的空间中并把isa指向_NSConcreteMallocBlock
,_Block_call_copy_helper
方法中对传递进来的参数做了一些处理
static void _Block_call_copy_helper(void *result, struct Block_layout *aBlock)
{
struct Block_descriptor_2 *desc = _Block_descriptor_2(aBlock);
if (!desc) return;
(*desc->copy)(result, aBlock); // do fixup
}
- 如果传入的参数不是对象类型的也就没有copy和dispose函数的就直接返回,否则就进入
desc->copy
方法,也就是外界传递过来的__Block_byref_id_object_copy_xx
然后再调用_Block_object_assign
对外界传递过来的参数处理 - 外界传递过来的参数一般分为以下几种类型,我们重点研究
BLOCK_FIELD_IS_OBJECT
和BLOCK_FIELD_IS_BYREF
// Block 捕获的外界变量的种类
// Runtime support functions used by compiler when generating copy/dispose helpers
// Values for _Block_object_assign() and _Block_object_dispose() parameters
enum {
// see function implementation for a more complete description of these fields and combinations
BLOCK_FIELD_IS_OBJECT = 3, // id, NSObject, __attribute__((NSObject)), block, ...
BLOCK_FIELD_IS_BLOCK = 7, // a block variable
BLOCK_FIELD_IS_BYREF = 8, // the on stack structure holding the __block variable
BLOCK_FIELD_IS_WEAK = 16, // declared __weak, only used in byref copy helpers
BLOCK_BYREF_CALLER = 128, // called from __block (byref) copy/dispose support routines.
};
-
_Block_object_assign
的实现
// Block 捕获外界变量的操作
void _Block_object_assign(void *destArg, const void *object, const int flags) {
const void **dest = (const void **)destArg;
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_OBJECT:
/*******
id object = ...;
[^{ object; } copy];
********/
_Block_retain_object(object);
*dest = object;
break;
case BLOCK_FIELD_IS_BLOCK:
/*******
void (^object)(void) = ...;
[^{ object; } copy];
********/
*dest = _Block_copy(object);
break;
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
/*******
// copy the onstack __block container to the heap
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__block ... x;
__weak __block ... x;
[^{ x; } copy];
********/
*dest = _Block_byref_copy(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
/*******
// copy the actual field held in the __block container
// Note this is MRC unretained __block only.
// ARC retained __block is handled by the copy helper directly.
__block id object;
__block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
/*******
// copy the actual field held in the __block container
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__weak __block id object;
__weak __block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
default:
break;
}
}
- 如果是普通对象,则交给系统arc处理,并拷贝对象指针,即引用计数+1,所以外界变量不能释放
- 如果是block类型的变量,则通过_Block_copy操作,将block从栈区拷贝到堆区
- 如果是__block修饰的变量,调用_Block_byref_copy函数 进行内存拷贝以及常规处理
static struct Block_byref *_Block_byref_copy(const void *arg) {
struct Block_byref *src = (struct Block_byref *)arg;
if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// src points to stack
struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
copy->isa = NULL;
// byref value 4 is logical refcount of 2: one for caller, one for stack
copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
copy->forwarding = copy; // patch heap copy to point to itself
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
copy2->byref_keep = src2->byref_keep;
copy2->byref_destroy = src2->byref_destroy;
if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
copy3->layout = src3->layout;
}
(*src2->byref_keep)(copy, src);
}
else {
// Bitwise copy.
// This copy includes Block_byref_3, if any.
memmove(copy+1, src+1, src->size - sizeof(*src));
}
}
// already copied to heap
else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
return src->forwarding;
}
内部对
Block_byref
进行处理,如果已经在堆中对他递增并返回,如果没有将它拷贝到堆中并更新指针指向它_Block_object_dispose
就是对对象的销毁
void _Block_object_dispose(const void *object, const int flags) {
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
// get rid of the __block data structure held in a Block
_Block_byref_release(object);
break;
case BLOCK_FIELD_IS_BLOCK:
_Block_release(object);
break;
case BLOCK_FIELD_IS_OBJECT:
_Block_release_object(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
break;
default:
break;
}
}
-
_Block_byref_release
的实现
static void _Block_byref_release(const void *arg) {
struct Block_byref *byref = (struct Block_byref *)arg;
// dereference the forwarding pointer since the compiler isn't doing this anymore (ever?)
byref = byref->forwarding;
if (byref->flags & BLOCK_BYREF_NEEDS_FREE) {
int32_t refcount = byref->flags & BLOCK_REFCOUNT_MASK;
os_assert(refcount);
if (latching_decr_int_should_deallocate(&byref->flags)) {
if (byref->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
struct Block_byref_2 *byref2 = (struct Block_byref_2 *)(byref+1);
(*byref2->byref_destroy)(byref);
}
free(byref);
}
}
}