时间序列(time series)系列1—简介

一、简介

笔者在工作中,接触到了客流数据,网络质量数据等,零零散散的对时间序列分析方法进行了学习和实践。
在平时的工作中,大多数公司都会有很多时序数据,也都离不开时序数据的挖掘。
所以现在整理分享出来,忘大家批评指正。


二、什么是时序数据

时间序列数据(time series data)是在不同时间上收集到的数据,用于描述现象随时间变化的情况。
时间序列是一种典型的数据,具有随时间变化的特征。在大多数场景中,都能见到的一种数据类型。
如客流数据,股票数据,销售额数据,网络日志,某些KPI指标等等内容。

Time Value
2018-11-01 2222
2018-11-02 3241
2018-11-03 4232
... ...

三、时间序列的分析

一般情况下,时间序列数据可以分解为3个部分,如下图所示:

  • Trend,数据的总体变化趋势
  • Seasonality,数据的周期性/季节性变化
  • Residuals,数据的残差或者噪音


    时间序列分解图

                            y = trend + seasonality + residuals
    上图就是时间序列分解图,时间序列数据可以看出是 trend, seasonal, residual等信号的叠加。对其进行分解,有助于我们了解数据,对数据进一步分析。

四、时间序列预测方法

首先我们要有个目标,想通过时间序列数据完成什么样的目标,短期、中期、长期预测。然后需要尽可能的收集时间序列数据,数据越多,能够发现更多数据特征,预测会更准确。时间序列需要对数据中的缺失、异常、范围等进行处理。
常见的时间序列数据预测方法,笔者主要总结一下几种:

  • 简单平均法
  • 移动平均法
  • 指数平均法
  • ARIMA法
  • Prophet法
  • 线性回归、KNN等机器学习算法
  • LSTM等深度学习算法

下面,我会针对每种算法进行简单的介绍,以及示例分析。没有详细介绍的部分,也会给出更好的参考文献,供大家学习。
希望大家有所提升,我也是不断的在学习。谢谢。
有问题欢迎留言,转载请注明地址。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容