大数据Hive 面试以及知识点

1 hive表关联查询,如何解决数据倾斜的问题?

倾斜原因:

map输出数据按key Hash的分配到reduce中,由于key分布不均匀、业务数据本身的特、建表时考虑不周、等原因造成的reduce 上的数据量差异过大。

1)、key分布不均匀;

2)、业务数据本身的特性;

3)、建表时考虑不周;

4)、某些SQL语句本身就有数据倾斜;

如何避免:对于key为空产生的数据倾斜,可以对其赋予一个随机值。

解决方案

1>.参数调节:

hive.map.aggr = true

hive.groupby.skewindata=true

有数据倾斜的时候进行负载均衡,当选项设定位true,生成的查询计划会有两个MR Job。第一个MR Job中,Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MR Job再根据预处理的数据结果按照Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个Reduce中),最后完成最终的聚合操作。

2>.SQL 语句调节:

1)、选用join key分布最均匀的表作为驱动表。做好列裁剪和filter操作,以达到两表做join 的时候,数据量相对变小的效果。

2)、大小表Join:

使用map join让小的维度表(1000 条以下的记录条数)先进内存。在map端完成reduce.

4)、大表Join大表:

把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null 值关联不上,处理后并不影响最终结果。

5)、count distinct大量相同特殊值:

count distinct 时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。

2. 请谈一下hive的特点是什么?hive和RDBMS有什么异同?

hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

3. 请把下一语句用hive方式实现?

SELECT a.key,a.value

FROM a

WHERE a.key not in (SELECT b.key FROM b)

答案:

select a.key,a.value from a where a.key not exists (select b.key from b)

4. Multi-group by 是hive的一个非常好的特性,请举例说明?

from A

insert overwrite table B

select A.a, count(distinct A.b) group by A.a

insert overwrite table C

  select A.c, count(distinct A.b) group by A.c

5. 请说明hive中 Sort By,Order By,Cluster By,Distrbute By各代表什么意思。

order by:会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)。只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。

sort by:不是全局排序,其在数据进入reducer前完成排序。

distribute by:按照指定的字段对数据进行划分输出到不同的reduce中。

cluster by:除了具有 distribute by 的功能外还兼具 sort by 的功能。

6.简要描述数据库中的 null,说出null在hive底层如何存储,并解释selecta.* from t1 a left outer join t2 b on a.id=b.id where b.id is null; 语句的含义

null与任何值运算的结果都是null, 可以使用is null、is not null函数指定在其值为null情况下的取值。

null在hive底层默认是用'\N'来存储的,可以通过alter table test SET SERDEPROPERTIES('serialization.null.format' = 'a');来修改。

查询出t1表中与t2表中id相等的所有信息。

7.写出hive中split、coalesce及collect_list函数的用法(可举例)。

Split将字符串转化为数组。

split('a,b,c,d' , ',') ==> ["a","b","c","d"]

COALESCE(T v1, T v2, …) 返回参数中的第一个非空值;如果所有值都为 NULL,那么返回NULL。

collect_list列出该字段所有的值,不去重  select collect_list(id) from table;

8.写出将 text.txt 文件放入 hive 中 test 表‘2016-10-10’ 分区的语句,test 的分区字段是 l_date。

LOAD DATA LOCAL INPATH '/your/path/test.txt' OVERWRITE INTO TABLE test PARTITION (l_date='2016-10-10')

想学习大数据或者对大数据技术感兴趣的朋友,这里我整理了一套大数据的学习视频免费分享给大家,从入门到实战都有,大家可以加我的微信:Lxiao_28获取!(备注领取资料)。也欢迎进微信群交流,或者获取Java高级技术学习资料。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容