DCIC2021 共享单车 task2

import os,codecs
import pandas as pd
import numpy as np

PATH = './dcic2021_data/'


# 读取共享单车停车点位(电子围栏)数据
def bike_fence_format(s):
    s = s.replace('[', '').replace(']', '').split(',')
    s = np.array(s).astype(float).reshape(5, -1)
    return s
    
# 共享单车停车点位(电子围栏)数据
bike_fence = pd.read_csv(PATH + 'gxdc_tcd.csv')
bike_fence['FENCE_LOC'] = bike_fence['FENCE_LOC'].apply(bike_fence_format)

# 读取共享单车订单数据
bike_order = pd.read_csv(PATH + 'gxdc_dd.csv')
bike_order = bike_order.sort_values(['BICYCLE_ID', 'UPDATE_TIME'])

#/*---------停车点处理---------*/
# 得出停车点 LATITUDE 范围
bike_fence['MIN_LATITUDE'] = bike_fence['FENCE_LOC'].apply(lambda x: np.min(x[:, 1]))
bike_fence['MAX_LATITUDE'] = bike_fence['FENCE_LOC'].apply(lambda x: np.max(x[:, 1]))

# 得到停车点 LONGITUDE 范围
bike_fence['MIN_LONGITUDE'] = bike_fence['FENCE_LOC'].apply(lambda x: np.min(x[:, 0]))
bike_fence['MAX_LONGITUDE'] = bike_fence['FENCE_LOC'].apply(lambda x: np.max(x[:, 0]))

from geopy.distance import geodesic
# 根据停车点 范围 计算具体的面积
bike_fence['FENCE_AREA'] = bike_fence.apply(lambda x: geodesic(
    (x['MIN_LATITUDE'], x['MIN_LONGITUDE']), (x['MAX_LATITUDE'], x['MAX_LONGITUDE'])
).meters, axis=1)

# 根据停车点 计算中心经纬度
bike_fence['FENCE_CENTER'] = bike_fence['FENCE_LOC'].apply(
    lambda x: np.mean(x[:-1, ::-1], 0)
)

#/*---------时间统计---------*/
# 对订单数据进行时间提取
bike_order['UPDATE_TIME'] = pd.to_datetime(bike_order['UPDATE_TIME'])
bike_order['DAY'] = bike_order['UPDATE_TIME'].dt.day.astype(object)
bike_order['DAY'] = bike_order['DAY'].apply(str)

bike_order['HOUR'] = bike_order['UPDATE_TIME'].dt.hour.astype(object)
bike_order['HOUR'] = bike_order['HOUR'].apply(str)
bike_order['HOUR'] = bike_order['HOUR'].str.pad(width=2,side='left',fillchar='0')

# 日期和时间进行拼接
bike_order['DAY_HOUR'] = bike_order['DAY'] + bike_order['HOUR']

#/*---------距离匹配计算潮汐点---------*/
# 调用knn
from sklearn.neighbors import NearestNeighbors
knn = NearestNeighbors(metric = "haversine", n_jobs=-1, algorithm='auto')
knn.fit(np.stack(bike_fence['FENCE_CENTER'].values))
# 计算离当前单车最近的一个停车点
dist, index = knn.kneighbors(bike_order[['LATITUDE','LONGITUDE']].values[:], n_neighbors=1)
# 标记该停车点
bike_order['fence'] = bike_fence.iloc[index.flatten()]['FENCE_ID'].values

# 计算所有停车点的潮汐流量
bike_inflow = pd.pivot_table(bike_order[bike_order['LOCK_STATUS'] == 1], 
                   values='LOCK_STATUS', index=['fence'],
                    columns=['DAY'], aggfunc='count', fill_value=0
)

bike_outflow = pd.pivot_table(bike_order[bike_order['LOCK_STATUS'] == 0], 
                   values='LOCK_STATUS', index=['fence'],
                    columns=['DAY'], aggfunc='count', fill_value=0
)

bike_remain = (bike_inflow - bike_outflow).fillna(0)
bike_remain[bike_remain < 0] = 0  
bike_remain = bike_remain.sum(1)

# 计算停车点的密度
bike_density = bike_remain / bike_fence.set_index('FENCE_ID')['FENCE_AREA']
bike_density = bike_density.sort_values(ascending=False).reset_index()
bike_density = bike_density.fillna(0)

#/*---------输出---------*/
bike_density['label'] = '0'
bike_density.iloc[:40, -1] = '1'

bike_density['BELONG_AREA'] ='厦门'
bike_density = bike_density.drop(0, axis=1)
bike_density.columns = ['FENCE_ID', 'FENCE_TYPE', 'BELONG_AREA']
bike_density.to_csv('./result2.txt', index=None, sep='|')

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容

  • 比较好的答案: 总结:http://ife.baidu.com/note/detail/id/694练习写ES6的...
    Hathaway_桉阅读 152评论 0 0
  • .1 学习beautifulsoup import urllib.request from bs4 import ...
    小鱼_febe阅读 138评论 0 0
  • 文本预处理分如下几步: 1.读入文本 defread_time_machine():withopen('/home...
    Baptiste阅读 214评论 0 0
  • 动态规划主要思想: 如果需要解决一个给定的问题,我们需要解决这个问题的子问题,再根据子问题的解得到原问题的解,可以...
    乔豆一麻袋阅读 267评论 0 0
  • 今天感恩节哎,感谢一直在我身边的亲朋好友。感恩相遇!感恩不离不弃。 中午开了第一次的党会,身份的转变要...
    迷月闪星情阅读 10,549评论 0 11