需求与背景
需求
需求比较明确,有个表相对来说比较大,有800多万行的数据,现在需要按天对其做count/sum操作,需要能实时得到结果,需要支持门店、大区、全国等范围的查询,需要按月统计,门店不多,1000以内(门店不会增加太多,基本上可以认为是1000以内)
资源情况
资源是来了创业公司后觉得落差最大的一点,现阶段的资源以及数据库的使用方式:
- 没有分库分表,800万数据在同一个表内
- 数据库资源非常差,4C8G的机器,支撑的tps/qps都非常小,所说百级别都可能达不到
现状总是难以让人满意,咱们就不吐槽了
难点
使用目前的mysql资源做count/sum,根本就跑不出结果来
常用方案
- 离线计算:公司有hive的部署及相关负责人在运维,通过hive做离线计算可得到结果,但是无法满足实时性的需求
- 流式计算:可做到毫秒级延迟,公司无部署,不可能为这个需求部署一套,成本太高了
- 使用olap:非常适合,apache drill可支持cube,完全能满足需求,且开发成本低,但是公司同样无任何olap产品的部署,成本太高
因此,常用方案在现阶段行不通,只能想其它的方案
可行方案
有没有方法可以解决这样的问题呢?当然是有的,可以使用预计算的方式,不仅成本低,不需要额外部署任何引擎直接使用原来的mysql,而且可以做到无延迟,下面详细描述具体方案
基本思路
- 基于时间对count/sum提前做累加
- 每个门店每天一个累加的count和sum,当原始表中有数据插入后,更新累加值,count+1,sum则加上业务值
- 1000个门店,一天只有1000个count和1000个sum,一个月最多31天,那么一个月最多31000个count和31000个sum
- 统计数据,可分为两类需求:
- 查当月/当天的,要实时查,需要直接从db里查询
- 查历史月份的数据,则可以通过hive计算出汇总后的结果
- 只需要保留一个月的数据,历史数据不需要保留,历史数据在经过hive做计算得到最终的结果后就可以删除了,所以最多只有3万级别的count和sum
- 查询时,根据索引直接查出当天的count和sum
- 想要查询大区或者全国的数据时,也只需要从这3万个count或3万个sum中通过in查询或者or查询做统计,已有的mysql资源完全没问题
在设计数据库时,将count和sum作为两个不同的字段,因此一行数据可以同时表示出一个门店一天的count和sum,总体数据量3万级别
将数据量控制在3w级别后,即使对全表做统计,也不会有什么问题,通过这种思路将问题简化了,但是这样做有一个缺点就是历史数据如何处理,代码刚上线的时候,肯定是没有历史结果的,可以通过hive对历史数据做一次汇总,并导入到结果表中
建表
在原有的mysql中建以下表:
create table aggregation_value(
id int unsigned auto_increment,primary key,
entity varchar(128) not null comment ‘表示主体,门店id’,
time_value bigint not null comment ‘时间,需要精确到天,即timestamp去掉时分秒以及毫秒’,
count_value bigint default '0' not null comment ‘需要的count值’,
sum_value decimal default '0' not null comment ‘需要的sum值’,
create_time datetime default CURRENT_TIMESTAMP not null,
modify_time datetime default CURRENT_TIMESTAMP not null,
flag varchar(32) default ‘’ not null comment ‘作为业务意义的标识字段,对兼容性的考虑,假如count或者sum的业务意义有变化,可以通过变更flag这个字段将新的数据与老的数据做区分’,
key uk unique (entity, time_value)
) comment '记录聚合函数的值 engine=InnoDB;
数据的累加
对于数据的累加,我们需要处理表中没有数据的情况以及有数据的情况,当表中没有数据时需要插入,有数据时需要更新,而插入时,会有并发导致插入出现索引冲突,所以当出现索引冲突后,说明这行数据已经存在,需要更新数据,伪代码如下:
beginTransaction();//开启事务
doBiz();//业务处理
try {
long daytime = getCurrentDay();//获取当前时间点的精确到天的timestamp
int updateRowCount = updateCountAndSum(dayTime, storeId);//通过当前时间天与门店id更新aggregation_value表
if (updateRowCount == 0) {
//数据不存在,需要插入
insertAggregationValueWithCountAndSum(dayTime, storeId);
}
} catch (DataIntegrityViolationException e) {
//插入失败,有索引冲突
updateCountAndSum(dayTime, storeId);//通过当前时间天与门店id更新aggregation_value表
}
commitTransaction();//提交事务
查询
查询比较简单,直接查aggregation_value表:
- 查询门店一天数据
select count_value, sum_value from aggregation_value where time_value = #{time} and entity = #{storeId}
- 查询门店一月的数据,在建表时,索引字段为(entity, time_value),因此可通过time_value做范围查询
select count_value, sum_value from aggregation_value where entity = #{storeId} and time_value >= #{start} and time_value <= #{end}
• 查询全国
select count_value, sum_value from aggregation_value where time_value = #{time} and entity in (#{storeId}, …)