人脸识别(dlib版)-1 dlib 安装及基础使用

Dlib 是一个 C++ 工具库,包含机器学习算法,图像处理,网络及一些工具类库。在工业界,学术界都得到广泛使用。接下来的几篇文章中,我将会分享 dlib 库在人脸识别中的应用。这篇文章,将介绍dlib库的安装及基础使用。

安装

推荐使用编译源码的方式安装dlib库。我们使用 dlib-19.16 版本进行说明,首先下载源码.

curl https://github.com/davisking/dlib/archive/v19.16.zip -o dlib-19.16.zip
unzip dlib-19.16.zip

我们将通过使用 python 使用 dlib 库,安装之前,电脑上应安装 python。
在编译之前,然后确保电脑系统上,有 CMakeC++ 编译环境。

Linux 操作系统下,可通过安装包管理工具 apt-get或者yum安装对应的 cmakeg++。e.g.

sudo apt-get install cmake
sudo apt-get install gcc g++

Mac OS X 上,可以通过 brew 安装 cmakeg++.

Windows 操作系统,到 CMake 官网下载页下载对应的安装包,如 Win 64 版本的安装包。C++ 编译环境,建议安装 Visual Studio 2017

下载源依赖之后,进入 dlib 源码目录,进行编译.

cd dlib-19.16
python3 setup.py install

安装完成后,验证是否安装成功

python3 -c "import dlib"

如果没有报错,则说明安装成功。

基础使用

接下来,我们将介绍 dlib 在图像处理上的基础使用。

目标检测

dlib 中的函数 find_candidate_object_locations() 能够识别指定的图片,并把可能存在目标的对象找出来。实现方法基于 Koen van de Sande 的论文 Segmentation as Selective Search for Object Recognition by Koen E. A. van de Sande, et al.。这个方法可以快速找到候选目标的区域,我们可以使用这些区域进行后续操作。

示例代码 如下:

import dlib

image_file = 'bbt1.jpg'
img = dlib.load_rgb_image(image_file)

# Locations of candidate objects will be saved into rects
rects = []
dlib.find_candidate_object_locations(img, rects, min_size=500)

print("number of rectangles found {}".format(len(rects))) 
for k, d in enumerate(rects):
    print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
        k, d.left(), d.top(), d.right(), d.bottom()))

代码中, 函数 load_rgb_image(...) 接受一个文件名称,然后返回 numpy 数组对象,这个作为 find_candidate_object_locations(...) 函数的输入。函数 find_candidate_object_locations(...) 第二个参数 rects 为列表,保存找到候选推向所在的区域,第三个参数 min_size 表示找到的区域大小不应该小于指定的像素值。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343