假如想要在ARM板上用tensorflow lite
,那么意味着必须要把PC上的模型生成tflite
文件,然后在ARM上导入这个tflite
文件,通过解析这个文件来进行计算。
根据前面所说,tensorflow
的所有计算都会在内部生成一个图,包括变量的初始化,输入定义等,那么即便不是经过训练的神经网络模型,只是简单的三角函数计算,也可以生成一个tflite
模型用于在tensorflow lite
上导入。所以,这里我就只做了简单的sin()
计算来跑一编这个流程。
生成tflite
模型
这部分主要是调用TFLiteConverter
函数,直接生成tflite
文件,不再通过pb
文件转化。
先上代码:
import numpy as np
import time
import math
import tensorflow as tf
SIZE = 1000
X = np.random.rand(SIZE, 1)
X = X*(math.pi/2.0)
start = time.time()
x1 = tf.placeholder(tf.float32, [SIZE, 1], name='x1-input')
x2 = tf.placeholder(tf.float32, [SIZE, 1], name='x2-input')
y1 = tf.sin(x1)
y2 = tf.sin(x2)
y = y1*y2
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
converter = tf.lite.TFLiteConverter.from_session(sess, [x1, x2], [y])
tflite_model = converter.convert()
open("/home/alcht0/share/project/tensorflow-v1.12.0/converted_model.tflite", "wb").write(tflite_model)
end = time.time()
print("2nd ", str(end - start))
- 转化函数
主要遇到的问题是tensorflow
的变化实在太快,这些个转化函数一直在变。位置也一直在变,现在参考官方文档,是按上面代码中调用,否则就会报找不到lite
之类的错误。我现在PC上的tensorflow
Python
版本是1.13,所以lite
已经在contrib
外面了,如果是以前的版本,要按文档中下面这样调用。
TensorFlow Version | Python API |
---|---|
1.12 | tf.contrib.lite.TFLiteConverter |
1.9-1.11 | tf.contrib.lite.TocoConverter |
1.7-1.8 | tf.contrib.lite.toco_convert |
- 输入参数
shape
本来在本文件中为了给定的输入数据大小自由,x1
,x2
的shape
会写成[None, 1]
,但是如果这样写,转化成tflite
模型后会默认为[1,1]
,并不能自由接收数据大小,所以在这里要指定大小SIZE
:
x1 = tf.placeholder(tf.float32, [SIZE, 1], name='x1-input')
导入tflite
模型
本来这部分应该是在ARM板子上做的,但是为了验证tflite
文件的可用性,我先在PC的Python
上试验。先上代码:
import tensorflow as tf
import numpy as np
import math
import time
SIZE = 1000
X = np.random.rand(SIZE, 1, ).astype(np.float32)
X = X*(math.pi/2.0)
start = time.time()
interpreter = tf.lite.Interpreter(model_path="/home/alcht0/share/project/tensorflow-v1.12.0/converted_model.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
interpreter.set_tensor(input_details[0]['index'], X)
interpreter.set_tensor(input_details[1]['index'], X)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
end = time.time()
print("1st ", str(end - start))
首先根据tflite
文件生成解析器,然后用allocate_tensors()
分配内存。将输入通过set_tensor
传入,然后调用invoke()
来真正运行。最后得到输出。
用Python
跑的时候可以很清楚的看到input_details
的数据结构。官方的例子是只传入一个数据,所以只需要取input_details[0]
,而我传入了2个输入,所以需要设置2个。同时可以看到input_details
的2个数据的名字都是我在之前设置的x1-input
和x2-input
,这样非常好理解。
- 输入参数类型
这里有个坑是输入参数的类型一定要注意。我在生成模型的时候定义的输入参数类型是tf.float32
,而在导入的时候如果直接是X = np.random.rand(SIZE, 1, )
的话,会报错:
ValueError: Cannot set tensor: Got tensor of type 0 but expected type 1 for input 3
这里把通过astype(np.float32)
把输入参数指定为float32
就OK了。
- 操作不支持的坑
可以从前面的代码里看到我写了两个sin()
,其实一开始是一个sin()
一个cos()
的,但是好像默认的tflite
模型不支持cos()
操作,无法生成,所以我只好暂时先只写sin()
,后面再研究怎么把cos()
加上。
这样在PC端的Python
中可以看出导出的tflite
模型可用,那我们下一步就开始在ARM板子上试了。就下一篇文章再说吧。