一、前言
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。
单例模式的特点:
1. 单例类只能有一个实例。
2. 单例类必须自己创建自己的唯一实例。
3. 单例类必须给所有其他对象提供这一实例。
单例模式创建方式分为两大类,饿汉式和懒汉,其中饿汉式比较简单,懒汉式则需要考虑线程安全。
二、饿汉式单例
public class Singleton {
private static Singleton instance = new Singleton();
/**
* 私有默认构造子
*/
private Singleton(){}
/**
* 静态工厂方法
*/
public static Singleton getInstance(){
return instance;
}
}
上面的例子中,在这个类被加载时,静态变量instance会被初始化,此时类的私有构造子会被调用。这时候,单例类的唯一实例就被创建出来了。
饿汉式是典型的空间换时间,当类装载的时候就会创建类的实例,不管你用不用,先创建出来,然后每次调用的时候,就不需要再判断,节省了运行时间。
饿汉式单例的缺点是它不是一种懒加载模式(lazy initialization),单例会在加载类后一开始就被初始化,即使客户端没有调用 getInstance()方法。饿汉式的创建方式在一些场景中将无法使用:譬如 Singleton 实例的创建是依赖参数或者配置文件的,在 getInstance() 之前必须调用某个方法设置参数给它,那样这种单例写法就无法使用了。
三、懒汉式单例
懒汉式由于是在运行的时候才实例化,因此在多线程运行环境下必须考虑到线程安全的问题,保证单例被正确的创建和获取。
1. 懒汉式,线程不安全
public class Singleton {
private static Singleton instance;
private Singleton (){}
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}
这段代码简单明了,而且使用了懒加载模式,但是却存在致命的问题。当有多个线程并行调用 getInstance() 的时候,就会创建多个实例。也就是说在多线程下不能正常工作。
2. 懒汉式,线程安全
public class Singleton {
private static Singleton instance;
private Singleton (){}
public static synchronized Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}
为了解决上面的问题,最简单的方法是将整个 getInstance() 方法设为同步(synchronized)。
虽然做到了线程安全,并且解决了多实例的问题,但是它并不高效。因为在任何时候只能有一个线程调用 getInstance() 方法。但是同步操作只需要在第一次调用时才被需要,即第一次创建单例实例对象时。这就引出了双重检验锁。
3. 双重检验锁
public class Singleton {
private volatile static Singleton instance = null;
private Singleton(){}
public static Singleton getInstance(){
//先检查实例是否存在,如果不存在才进入下面的同步块
if(instance == null){
//同步块,线程安全的创建实例
synchronized (Singleton.class) {
//再次检查实例是否存在,如果不存在才真正的创建实例
if(instance == null){
instance = new Singleton();
}
}
}
return instance;
}
}
可以使用“双重检查加锁”的方式来实现,就可以既实现线程安全,又能够使性能不受很大的影响。那么什么是“双重检查加锁”机制呢?
所谓“双重检查加锁”机制,指的是:并不是每次进入getInstance方法都需要同步,而是先不同步,进入方法后,先检查实例是否存在,如果不存在才进行下面的同步块,这是第一重检查,进入同步块过后,再次检查实例是否存在,如果不存在,就在同步的情况下创建一个实例,这是第二重检查。这样一来,就只需要同步一次了,从而减少了多次在同步情况下进行判断所浪费的时间。
“双重检查加锁”机制的实现会使用关键字volatile,它的意思是:被volatile修饰的变量的值,将不会被本地线程缓存,所有对该变量的读写都是直接操作共享内存,从而确保多个线程能正确的处理该变量。
注意:在java1.4及以前版本中,很多JVM对于volatile关键字的实现的问题,会导致“双重检查加锁”的失败,因此“双重检查加锁”机制只只能用在java5及以上的版本。
4. 静态内部类
什么是类级内部类?
简单点说,类级内部类指的是,有static修饰的成员式内部类。如果没有static修饰的成员式内部类被称为对象级内部类。
类级内部类相当于其外部类的static成分,它的对象与外部类对象间不存在依赖关系,因此可直接创建。而对象级内部类的实例,是绑定在外部对象实例中的。
类级内部类中,可以定义静态的方法。在静态方法中只能够引用外部类中的静态成员方法或者成员变量。
类级内部类相当于其外部类的成员,只有在第一次被使用的时候才被会装载。
多线程缺省同步锁的知识
大家都知道,在多线程开发中,为了解决并发问题,主要是通过使用synchronized来加互斥锁进行同步控制。但是在某些情况中,JVM已经隐含地为您执行了同步,这些情况下就不用自己再来进行同步控制了。这些情况包括:
1.由静态初始化器(在静态字段上或static{}块中的初始化器)初始化数据时
2.访问final字段时
3.在创建线程之前创建对象时
4.线程可以看见它将要处理的对象时
public class Singleton {
private Singleton(){}
/**
* 类级的内部类,也就是静态的成员式内部类,该内部类的实例与外部类的实例
* 没有绑定关系,而且只有被调用到时才会装载,从而实现了延迟加载。
*/
private static class SingletonHolder{
/**
* 静态初始化器,由JVM来保证线程安全
*/
private static Singleton instance = new Singleton();
}
public static Singleton getInstance(){
return SingletonHolder.instance;
}
}
要想很简单地实现线程安全,可以采用静态初始化器的方式,它可以由JVM来保证线程的安全性。比如前面的饿汉式实现方式。但是这样一来,不是会浪费一定的空间吗?因为这种实现方式,会在类装载的时候就初始化对象,不管你需不需要。
如果现在有一种方法能够让类装载的时候不去初始化对象,那不就解决问题了?一种可行的方式就是采用类级内部类,在这个类级内部类里面去创建对象实例。这样一来,只要不使用到这个类级内部类,那就不会创建对象实例,从而同时实现延迟加载和线程安全。
5. 枚举 Enum
public enum Singleton {
/**
* 定义一个枚举的元素,它就代表了Singleton的一个实例。
*/
uniqueInstance;
/**
* 单例可以有自己的操作
*/
public void singletonOperation(){
//功能处理
}
}
我们可以通过EasySingleton.INSTANCE来访问实例,这比调用getInstance()方法简单多了。创建枚举默认就是线程安全的,所以不需要担心double checked locking,而且还能防止反序列化导致重新创建新的对象。