编写内存效率的java代码-面向GC

原文: 沐剑

Java程序员在编码过程中通常不需要考虑内存问题,JVM经过高度优化的GC机制大部分情况下都能够很好地处理堆(Heap)的清理问题。以至于许多Java程序员认为,我只需要关心何时创建对象,而回收对象,就交给GC来做吧!甚至有人说,如果在编程过程中频繁考虑内存问题,是一种退化,这些事情应该交给编译器,交给虚拟机来解决。

这话其实也没有太大问题,的确,大部分场景下关心内存、GC的问题,显得有点“杞人忧天”了,高老爷说过:

过早优化是万恶之源。

但另一方面,什么才是“过早优化”?

If we could do things right for the first time, why not?

事实上JVM的内存模型(JMM)理应是Java程序员的基础知识,处理过几次JVM线上内存问题之后就会很明显感受到,很多系统问题,都是内存问题。

对JVM内存结构感兴趣的同学可以看下浅析Java虚拟机结构与机制这篇文章,本文就不再赘述了,本文也并不关注具体的GC算法,相关的文章汗牛充栋,随时可查。

另外,不要指望GC优化的这些技巧,可以对应用性能有成倍的提高,特别是对I/O密集型的应用,或是实际落在YoungGC上的优化,可能效果只是帮你减少那么一点YoungGC的频率。

但我认为,优秀程序员的价值,不在于其所掌握的几招屠龙之术,而是在细节中见真著,就像前面说的,如果我们可以一次把事情做对,并且做好,在允许的范围内尽可能追求卓越,为什么不去做呢?

一、GC分代的基本假设

大部分GC算法,都将堆内存做分代(Generation)处理,但是为什么要分代呢,又为什么不叫内存分区、分段,而要用面向时间、年龄的“代”来表示不同的内存区域?

GC分代的基本假设是:

绝大部分对象的生命周期都非常短暂,存活时间短。

而这些短命的对象,恰恰是GC算法需要首先关注的。所以在大部分的GC中,YoungGC(也称作MinorGC)占了绝大部分,对于负载不高的应用,可能跑了数个月都不会发生FullGC。

基于这个前提,在编码过程中,我们应该尽可能地缩短对象的生命周期。在过去,分配对象是一个比较重的操作,所以有些程序员会尽可能地减少new对象的次数,尝试减小堆的分配开销,减少内存碎片。

但是,短命对象的创建在JVM中比我们想象的性能更好,所以,不要吝啬new关键字,大胆地去new吧。

当然前提是不做无谓的创建,对象创建的速率越高,那么GC也会越快被触发。

结论:

分配小对象的开销分享小,不要吝啬去创建。

GC最喜欢这种小而短命的对象。

让对象的生命周期尽可能短,例如在方法体内创建,使其能尽快地在YoungGC中被回收,不会晋升(romote)到年老代(Old Generation)。

二、对象分配的优化

基于大部分对象都是小而短命,并且不存在多线程的数据竞争。这些小对象的分配,会优先在线程私有的TLAB中分配,TLAB中创建的对象,不存在锁甚至是CAS的开销。

TLAB占用的空间在Eden Generation。

当对象比较大,TLAB的空间不足以放下,而JVM又认为当前线程占用的TLAB剩余空间还足够时,就会直接在Eden Generation上分配,此时是存在并发竞争的,所以会有CAS的开销,但也还好。

当对象大到Eden Generation放不下时,JVM只能尝试去Old Generation分配,这种情况需要尽可能避免,因为一旦在Old Generation分配,这个对象就只能被Old Generation的GC或是FullGC回收了。

三、不可变对象的好处

GC算法在扫描存活对象时通常需要从ROOT节点开始,扫描所有存活对象的引用,构建出对象图。

不可变对象对GC的优化,主要体现在Old Generation中。

可以想象一下,如果存在Old Generation的对象引用了Young Generation的对象,那么在每次YoungGC的过程中,就必须考虑到这种情况。

Hotspot JVM为了提高YoungGC的性能,避免每次YoungGC都扫描Old Generation中的对象引用,采用了卡表(Card Table)的方式。

简单来说,当Old Generation中的对象发生对Young Generation中的对象产生新的引用关系或释放引用时,都会在卡表中响应的标记上标记为脏(dirty),而YoungGC时,只需要扫描这些dirty的项就可以了。

可变对象对其它对象的引用关系可能会频繁变化,并且有可能在运行过程中持有越来越多的引用,特别是容器。这些都会导致对应的卡表项被频繁标记为dirty。

而不可变对象的引用关系非常稳定,在扫描卡表时就不会扫到它们对应的项了。

注意,这里的不可变对象,不是指仅仅自身引用不可变的final对象,而是真正的Immutable Objects。

四、引用置为null的传说

早期的很多Java资料中都会提到在方法体中将一个变量置为null能够优化GC的性能,类似下面的代码:

Listlist=newArrayList();// some codelist=null;// help GC

事实上这种做法对GC的帮助微乎其微,有时候反而会导致代码混乱。

我记得几年前撒迦在HLL VM小组中详细论述过这个问题,原帖我没找到,结论基本就是:

在一个非常大的方法体内,对一个较大的对象,将其引用置为null,某种程度上可以帮助GC。

大部分情况下,这种行为都没有任何好处。

所以,还是早点放弃这种“优化”方式吧。

GC比我们想象的更聪明。

五、手动档的GC

在很多Java资料上都有下面两个奇技淫巧:

通过Thread.yield()让出CPU资源给其它线程。

通过System.gc()触发GC。

事实上JVM从不保证这两件事,而System.gc()在JVM启动参数中如果允许显式GC,则会触发FullGC,对于响应敏感的应用来说,几乎等同于自杀。

So,让我们牢记两点:

Never useThread.yield()。

Never useSystem.gc()。除非你真的需要回收Native Memory。

第二点有个Native Memory的例外,如果你在以下场景:

使用了NIO或者NIO框架(Mina/Netty)

使用了DirectByteBuffer分配字节缓冲区

使用了MappedByteBuffer做内存映射

由于Native Memory只能通过FullGC(或是CMS GC)回收,所以除非你非常清楚这时真的有必要,否则不要轻易调用System.gc(),且行且珍惜。

另外为了防止某些框架中的System.gc调用(例如NIO框架、Java RMI),建议在启动参数中加上-XX:+DisableExplicitGC来禁用显式GC。

这个参数有个巨大的坑,如果你禁用了System.gc(),那么上面的3种场景下的内存就无法回收,可能造成OOM,如果你使用了CMS GC,那么可以用这个参数替代:-XX:+ExplicitGCInvokesConcurrent。

关于System.gc(),可以参考毕玄的几篇文章:

CMS GC会不会回收Direct ByteBuffer的内存

说说在Java启动参数上我犯的错

java.lang.OutOfMemoryError:Map failed

六、指定容器初始化大小

Java容器的一个特点就是可以动态扩展,所以通常我们都不会去考虑初始大小的设置,不够了反正会自动扩容呗。

但是扩容不意味着没有代价,甚至是很高的代价。

例如一些基于数组的数据结构,例如StringBuilder、StringBuffer、ArrayList、HashMap等等,在扩容的时候都需要做ArrayCopy,对于不断增长的结构来说,经过若干次扩容,会存在大量无用的老数组,而回收这些数组的压力,全都会加在GC身上。

这些容器的构造函数中通常都有一个可以指定大小的参数,如果对于某些大小可以预估的容器,建议加上这个参数。

可是因为容器的扩容并不是等到容器满了才扩容,而是有一定的比例,例如HashMap的扩容阈值和负载因子(loadFactor)相关。

Google Guava框架对于容器的初始容量提供了非常便捷的工具方法,例如:

Lists.newArrayListWithCapacity(initialArraySize);Lists.newArrayListWithExpectedSize(estimatedSize);Sets.newHashSetWithExpectedSize(expectedSize);Maps.newHashMapWithExpectedSize(expectedSize);

这样我们只要传入预估的大小即可,容量的计算就交给Guava来做吧。

反例:

如果采用默认无参构造函数,创建一个ArrayList,不断增加元素直到OOM,那么在此过程中会导致:

多次数组扩容,重新分配更大空间的数组

多次数组拷贝

内存碎片

七、对象池

为了减少对象分配开销,提高性能,可能有人会采取对象池的方式来缓存对象集合,作为复用的手段。

但是对象池中的对象由于在运行期长期存活,大部分会晋升到Old Generation,因此无法通过YoungGC回收。

并且通常……没有什么效果。

对于对象本身:

如果对象很小,那么分配的开销本来就小,对象池只会增加代码复杂度。

如果对象比较大,那么晋升到Old Generation后,对GC的压力就更大了。

从线程安全的角度考虑,通常池都是会被并发访问的,那么你就需要处理好同步的问题,这又是一个大坑,并且同步带来的开销,未必比你重新创建一个对象小。

对于对象池,唯一合适的场景就是当池中的每个对象的创建开销很大时,缓存复用才有意义,例如每次new都会创建一个连接,或是依赖一次RPC。

比如说:

线程池

数据库连接池

TCP连接池

即使你真的需要实现一个对象池,也请使用成熟的开源框架,例如Apache Commons Pool。

另外,使用JDK的ThreadPoolExecutor作为线程池,不要重复造轮子,除非当你看过AQS的源码后认为你可以写得比Doug Lea更好。

八、对象作用域

尽可能缩小对象的作用域,即生命周期。

如果可以在方法内声明的局部变量,就不要声明为实例变量。

除非你的对象是单例的或不变的,否则尽可能少地声明static变量。

九、各类引用

java.lang.ref.Reference有几个子类,用于处理和GC相关的引用。JVM的引用类型简单来说有几种:

Strong Reference,最常见的引用

Weak Reference,当没有指向它的强引用时会被GC回收

Soft Reference,只当临近OOM时才会被GC回收

Phantom Reference,主要用于识别对象被GC的时机,通常用于做一些清理工作

当你需要实现一个缓存时,可以考虑优先使用WeakHashMap,而不是HashMap,当然,更好的选择是使用框架,例如Guava Cache。

最后,再次提醒,以上的这些未必可以对代码有多少性能上的提升,但是熟悉这些方法,是为了帮助我们写出更卓越的代码,和GC更好地合作。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容