Python 招聘信息爬取及可视化

自学python的大四狗发现校招招python的屈指可数,全是C++、Java、PHP,但看了下社招岗位还是有的。于是为了更加确定有多少可能找到工作,就用python写了个爬虫爬取招聘信息,数据处理,最后用R语言进行可视化呈现。项目地址:Github Repo 求关注。

scrapy爬虫

python语言简单强大,虽然效率比不上C++这类编程语言,但因为没有了繁琐严格的语法,能让程序员更加专注于业务逻辑,缩短开发周期。虽然用urllib、beautifulsoup之类的包也可以写出爬虫,但是使用scrapy框架能够避免重复制造轮子,可以写尽可能少的代码实现。以下就介绍爬虫核心的代码:

Item

首先需要定义你要爬取的是什么样的数据,在scrapy自动生成的项目文件里的items.py中定义爬取的数据。我爬取了招聘的岗位名称(title)、城市(company)、地址(location)和招聘信息的url:

Spider

爬虫自然是主体的逻辑部分,可以用scrapy的genspider子命令生成模板代码,还可以设置spider类型。此处用的最基础的spider.Spider类型。爬取的列表页是51job(51job好爬!)手动搜索全国python招聘信息得到的,通过观察可以发现它翻页是通过url里的参数实现的,因此写了个生成器生成每页对应的request。parse方法则是其实request对应的response默认的处理方法,在此用css选择器(这里应该是用浏览器工具直接生成的,实际应该不需要这么长)和正则表达式抽取出每一条招聘信息的地址,调用Request方法获得response再把response传给parse_item方法(这个方法是自定义的,不是scrapy默认支持的方法)处理。在parse_item方法中的response才是真正的每条招聘信息详情页。这里主要使用xpath选择器,因为不是前端不大熟悉css选择器。xpath和css选择器都可以在w3cschool找到教程,很短很快能看完。

Pipelines

Pipeline管道用于爬取到Item后的数据处理,虽然scrapy本身自带一些存储功能如CSV,但如果要自定义更复杂的处理存储可以在pipeline里实现,最主要是在process_item(self,item,spider)方法中实现。在这实现了两个pipeline,第一个是dropPipeline,用于判断爬取的Item招聘岗位标题中是否有python字串,如果没有就抛出DropItem异常丢弃Item。第二个pipeline实现了sqlite存储。注意在setting里设置好每个管道的顺序,先通过丢弃的管道剩下的再经过存储管道,否则丢弃就没有意义了。

middleware

其实上面代码能实现爬取存储了,不过我写了个没用上的middleware。middleware中间件就是用于处理request和response的,可以在request发出前对其进行处理,response收到后进行处理。写了一个自动切换http代理的中间件,本来想得是http代理从西刺网站抓取(代码仓库里有,用的selenium爬的),但是测试了下其实西刺网站代理很多是不能用的,所以最后干脆不用了~

数据处理

数据处理主要是用高德地图的api获取地理位置坐标,但因为在数据可视化阶段使用的可视化工具是不是国产的,而国内地图的经纬度又经过了加偏处理,所以还需要进一步转换成国际标准的经纬度,幸亏也有api可以用。在这一步还同时统计了每座城市的招聘数量,不过其实这个放最后用R语言统计好像更方便。具体代码就不贴了,太长,可以去github看。

R语言可视化

这个是最后的重头戏,其实R语言不是很精通,在coursera上上的约翰霍普金斯大学的数据科学系列课程,书上没有的干货很多,比如shiny,比如R语言包怎么写,分析报告怎么写,甚至用R写ppt怎么写,还有很多设计的项目可以实践。。。但是要在统计分析方面深入的话还是看书比较好,课上的有点快,特别是统计学那部分一个个概念分分钟扔给你,根本听不懂。。。由于实在没怎么学过统计学,并且爬取的信息也有限,所以这里只进行了可视化。

ggplot可以是R语言可视化最著名的包,下载量也是在所有R语言包中靠前的。而plotly是专门做数据可视化的,支持python、R、Matlab等(还是在公开课干货中看到的)。plotly包只要一个函数(ggplotly)就可以把普通的ggplot转换成可交互的图,可以放大缩小拖拽,鼠标经过时还会显示具体的数据。图中可见北上深广python招聘还是挺多的,北上都有两百多,而到深圳就只有90了,再后面就更少了。还是得去大城市机会比较多~

2,plotly的scatergeo图,圆圈大小代表数据大小,经过根号调整过大小,不然差距太大,小圆圈全都被覆盖了。右侧的四分位点击后是可以隐藏或者显示特定颜色的圆圈的。还有鼠标悬停在圆圈上同样会显示详细信息。遗憾的是plotly在亚洲部分的地图还不能细分到省。

3,leaflet地图则是另一个R语言包,同样是公开课看到的。地图上会显示每一个招聘信息的位置,点击后有职位名称和公司名称,职位名称还是个链接。leaflet地图还是很让人吃惊,竟然不用翻墙而且放大后地点还挺多的。要找离你最近的python招聘用这个图还是真的很不错的!

最后感谢大家能耐着性子,看完我啰哩啰嗦的面经,然后我有做python材料的整合,关于python编程,自己有做材料的整合,一个完整的python编程学习路线,学习资料和工具。想要这些资料的可以关注小编,加入python学习交流Q群735967233

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容