蛋白质结构预测与分析常用网址(中)

蛋白质三级结构预测方法:

1. 同源模建 homology modeling

2. 折叠识别 fold recognition

3. 从头计算 ab initio method


同源模建基本步骤:

1. 模板的选择;

2.待测序列与模板序列的比对;

3. 模型的建立:①待测蛋白的主链构建;②loop区的模建;③侧链安装

#目前较为流行的侧链安装程序SCWRL(http://dunbrack.fccc.edu/scwrl4/index.php)

4. 模型的评估和循环精修。

#常见的模型评估手段是:

(1)、利用软件自动绘制蛋白质主链二面角 Ranmachandran 图,判断处于Ranmachandran 图中许可区域的氨基酸的比例是否高于85%,检查分子中的键长、键角和过近接触等,通过判断这些立体化学性参数的异常来判断所建模型的好坏;

(2)、统计实验测定的蛋白质结构,得到打分函数,再比较预测模型的打分,从而实现对预测模型的评估。

#模型评估的软件:PROCHECK/Verify3D/ModFold/MetaMQAP/ProQ/......


常用的蛋白质结构预测方法的网址:

1. 预测方法---同源模建

1)Modeller

网址: http://salilab.org/modeller/

简介: MODELLER is used for homology or comparative modeling of protein three-dimensional structures. The user provides an alignment of a sequence to be modeled with known related structures and MODELLER automatically calculates a model containing all non-hydrogen atoms. MODELLER implements comparative protein structure modeling by satisfaction of spatial restraints, and can perform many additional tasks, including de novo modeling of loops in protein structures, optimization of various models of protein structure with respect to a flexibly defined objective function, multiple alignment of protein sequences and/or structures, clustering, searching of sequence databases, comparison of protein structures, etc. 

2)Swiss-Model

网址: https://swissmodel.expasy.org/

简介:SWISS-MODEL is a fully automated protein structure homology-modelling server, accessible via the ExPASy web server, or from the program DeepView (Swiss Pdb-Viewer). The purpose of this server is to make Protein Modelling accessible to all biochemists and molecular biologists worldwide.

3)3D-JIGSAW

网址: http://bmm.crick.ac.uk/~3djigsaw/

简介:3D-JIGSAW is an automated system to build three-dimensional models for proteins based on homologues of known structure.

4)EsyPred3D

网址: http://www.unamur.be/sciences/biologie/urbm/bioinfo/esypred/

简介:ESyPred3D is a new automated homology modeling program. The method gets benefit of the increased alignment performances of a new alignment strategy using neural networks. Alignments are obtained by combining, weighting and screening the results of several multiple alignment programs.

参考文献:http://www.ncbi.nlm.nih.gov/pubmed/12217917

ESyPred3D: Prediction of proteins 3D structures.

Lambert C, Leonard N, De Bolle X, Depiereux E.

Bioinformatics. 2002 Sep;18(9):1250-1256

5)CPHmodels

网址: http://www.cbs.dtu.dk/services/CPHmodels/

简介:CPHmodels 3.2 is a protein homology modeling server. The template recognition is based on profile-profile alignment guided by secondary structure and exposure predictions.

6)RaptorX

网址: http://raptorx.uchicago.edu/

简介:RaptorX is a Web Portal for Protein Structure and Function Prediction.This web portal for protein structure and function prediction is developed by Xu group, excelling at secondary, tertiary and contact prediction for protein sequences without close homologs in the Protein Data Bank (PDB). Given a protein sequence, RaptorX predicts its secondary and tertiary structures as well as contact map, solvent accessibility, disordered regions and binding sites. RaptorX assigns the following confidence scores to indicate the quality of a predicted 3D model: P-value for the relative global quality, GDT (global distance test) and uGDT (un-normalized GDT) for the absolute global quality, and RMSD for the absolute local quality of each residue in the model. RaptorX-Binding predicts the binding sites of a protein sequence, based upon the predicted 3D model by RaptorX.

7)HHpred

网址: https://toolkit.tuebingen.mpg.de/hhpred#

简介:HHpred- Homology detection & structure prediction by HMM-HMM comparison


2. 预测方法---折叠识别

1)DescFold

网址: http://protein.cau.edu.cn/DescFold/

简介:DescFold(Descriptor-based Fold Recognition System) is a web server for protein fold recognition,which can predict a protein's fold type from its amino acid sequence. The server combines six effictive descriptors : a profile-sequence-alignment-based descriptor using Psi-blaste-values and bit scores, a sequence-profile-alignment-based descriptor using Rps-blaste-values and bit scores, a descriptor based on secondary structure element alignment (SSEA), a descriptor based on the occurrence of PROSITE functional motifs, a descriptor based on profile-profile-alignment(PPA) and a descriptor based on Profile-structural-profile-alignment (PSPA) .

2)pGenThreader

网址: http://bioinf.cs.ucl.ac.uk/psipred/

简介:Highly sensitive fold recognition using profile-profile comparison (whole chain library).

3)pGenThreader

网址: http://ffas.burnham.org/ffas-cgi/cgi/ffas.pl

简介:

4)FFAS03

网址: http://ffas.burnham.org/ffas-cgi/cgi/ffas.pl

参考文献:http://www.ncbi.nlm.nih.gov/pubmed/15980471

Nucleic Acids Res.2005 Jul 1;33(Web Server issue):W284-8.

FFAS03: a server for profile--profile sequence alignments.

Jaroszewski L1,Rychlewski L,Li Z,Li W,Godzik A.

5)Phyre2

网址:http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index

参考文献:
http://www.nature.com/nprot/journal/v10/n6/full/nprot.2015.053.html

NATURE PROTOCOLS|PROTOCOL

The Phyre2 web portal for protein modeling, prediction and analysis

Lawrence A Kelley


3. 预测方法---从头计算法

1)Rosetta

网址:https://www.rosettacommons.org/software

简介:The Rosetta software suite includes algorithms for computational modeling and analysis of protein structures. It has enabled notable scientific advances in computational biology, including de novo protein design, enzyme design, ligand docking, and structure prediction of biological macromolecules and macromolecular complexes.

2)QUARK

网址:http://zhanglab.ccmb.med.umich.edu/QUARK/

简介:QUARK is a computer algorithm for ab initio protein folding and protein structure prediction, which aims to construct the correct protein 3D model from amino acid sequence only. QUARK models are built from small fragments (1-20 residues long) by replica-exchange Monte Carlo simulation under the guide of an atomic-level knowledge-based force field. 

4. 预测方法---综合法

1)I-TASSER

网址:http://zhanglab.ccmb.med.umich.edu/I-TASSER/

简介:I-TASSER (Iterative Threading ASSEmbly Refinement) is a hierarchical approach to protein structure and function prediction. Structural templates are first identified from the PDB by multiple threading approach LOMETS; full-length atomic models are then constructed by iterative template fragment assembly simulations. Finally, function insights of the target are derived by threading the 3D models through protein function database BioLiP 

5. 蛋白质二级结构预测

1) NetSurfP

网址: http://www.cbs.dtu.dk/services/NetSurfP/

简介:NetSurfP server predicts the surface accessibility and secondary structure of amino acids in an amino acid sequence. The method also simultaneously predicts the reliability for each prediction, in the form of a Z-score. The Z-score is related to the surface prediction, and not the secondary structure.

2) SSpro

网址: http://scratch.proteomics.ics.uci.edu/

简介:SSpro is a server for protein secondary structure prediction based on protein evolutionary information (sequence homology) and homologous protein's secondary structure (structure homology).

SSpro currently achieves a performance exceeding 79% correctly classified residues on proteins with no homologs in the PDB and exceeding 92% correctly classified residues on proteins where homologs can be found in the PDB, ranking on top of the tested prediction servers.

3) PredictProtein

网址: https://www.predictprotein.org/

4) JPred

网址: http://www.compbio.dundee.ac.uk/jpred/

5) PREDATOR

网址:http://mobyle.pasteur.fr/cgi-bin/portal.py?%20#forms::predator

简介:Protein secondary structure prediction from a single sequence or a set of sequences

6) PSSpred

网址:http://zhanglab.ccmb.med.umich.edu/PSSpred/

简介:PSSpred (ProteinSecondaryStructurePREDiction) is a simple neural network training algorithm for accurate protein secondary structure prediction. It first collects multiple sequence alignments using PSI-BLAST. Amino-acid frequence and log-odds data with Henikoff weights are then used to train secondary structure, separately, based on the Rumelhart error backpropagation method. The final secondary structure prediction result is a combination of 7 neural network predictors from different profile data and parameters.

7) PSSpred

网址:http://bioinf.cs.ucl.ac.uk/psipred/


声明:本文是整合前人的智慧,欢迎补充讨论!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容

  • 学习篇: 1:拆书《真实的幸福》完成,完成每日一拆 2:九型人格网络选修课完成88分 3:读书笔记摘抄6页 4:西...
    心声树洞阅读 104评论 0 0
  • 那一年——二零一五年,我画了下面这二十几颗大小不一,精致程度各异的彩绘石头。 那一年,我很开心地作画。 那一年,我...
    奈斯兔米丘阅读 1,211评论 31 45
  • 时间过得飞快,至今我们在一起已经330天,又可以说是7920个小时。这些时间里,有欢笑,有争吵,有许多许多我们...
    戚戚乖乖阅读 150评论 0 0