数学学习有技巧

一、怎样才能提高自己的解题能力?

1、模仿书本上的例题解题过程,模仿老师的解题过程。解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。

2、实践。如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。

3、提高自己的解题能力,光靠模仿是不够的,你必须要及时归纳总结,甚至把一类题的解题技巧找到,形成自己的秘笈。

4、精通以下几类数学思想(所谓思想就是指导我们实践的理论方法,这里主要指想法或方法):

1、转化思想

2、方程思想

3、形数结合思想

4、函数思想

5、整体思想

6、分类讨论思想

7、统计思想

拿分类讨论思想来举例,分类讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。这究竟是为什么呢?

1)概念不清,导致漏解:对所学知识概念不清,领会不够深刻,导致答题不完整。例:a.已知(a-3)x>6,求x的取值范围。b.若y2+(k+2)y+16是完全平方式,求k。

2)思维固定,导致漏解:在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。例:a.若等腰三解形腰上的高等于腰长的一半、求底角。b.若直角三角形三条边分别为3、4、c,求c的值。c.圆O的半径为1.25cm,两条互相平行的弦长分别为1.5cm、2cm,求两条弦之间的距离。

二、学习数学应注意培养什么样的能力?

1. 运算能力,否则每次考试大题第一题你就开始错!

2. 空间想象能力,否则几何题会让你痛不欲生!

3. 逻辑思维能力,否则以后的证明题和推导题会让你生不如死!

4. 将实际问题抽象为数学问题的能力,不然应用题会让你虽死犹生!

5. 形数结合互相转化的能力。这考试每次考试的压轴题哦!

6. 观察、实验、比较、猜想、归纳问题的能力。不然每次选择或者填空题的最后一题找规律会让你内流满面!

7. 研究、探讨问题的能力和创新能力。不然每次的附加题咱们就不用看了!

三、数学解题最常用的方法是什么?

1、配方法

2、因式分解法

3、换元法

4、判别式法与韦达定理

5、待定系数法

6、构造法

7、反证法

8、面积法

9、几何变换法:几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法

拿第十个来举例:要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面介绍常用方法。(1)直接推演法(2)验证法(3)特殊元素法(4)排除、筛选法(5)图解法(6)分析法

四、学好数学的流程是什么?

1. 预习 : 在课前把老师即将讲授的单元内容浏览一次,并留意不了解的部分。

2. 专心听讲:

(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误,更重要的是思维能力的学习、培养。

(2)上课时一面听讲就要一面把重点背下来,而非都记,有甚者连老师的口水话也记上,纯属浪费。

(3)待回家后只需花很短的时间,便能将今日所教的课程复习完毕,事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什么都不记得,白白浪费一节课,老师所讲又还给了老师,真可惜、遗憾。

3. 课后练习

(1) 整理重点

(2) 适当练习

(3) 练习时一定要亲自动手演算。

4. 测验

(1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。

(2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。

(3) 考试时,我们的目的是要得高分、满分,而不是作学术研究,所以遇到较难的题目不要硬做,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到甚至超常发挥的效果。

(4) 考试时,容易紧张的同学,有两个可能的原因:

a. 准备不够充分,以致缺乏信心。这种人要加强考前的准备,注重基础。

b. 对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。这种人必须调整心态,给自己的要求是:尽自己的最大能力去做就行。

5. 找错、补强 :

测验后,不论分数高低,要将做错的题目再订正一遍,务必找出错误之处、原因,修正观念,如此才能学得更好、真正进步。

6. 回想:

一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最重要的。将主题重点回想一遍,才能完整了解我们在学些什么东西。

五、数学学习有技巧吗?

技巧肯定是有的,但是需要咱们不断的练习技巧,不然没有任何用处。推荐一个中考数学作辅助线规律总结:

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难!

图片发自简书App
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容