初等数论四大基本定理

  • 四大基本定理
    威尔逊定理
    欧拉定理
    中国剩余定理
    费马小定理

  • 欧几里得算法 (求greatest common divisor)
    gcd(a, b) = gcd(a - b, b) assume a > b
    gcd(a, b) = gcd(a % b, b) (复杂度为O(logn))
    因为从下到上数据规模增长是指数级别,比斐波那契还大,反推回去从上到下就是O(logn)
    最小公倍数:lcm(a, b) = a * b / gcd(a, b) 容易爆数据范围,可以写成 lcm(a, b) = a / gcd(a, b) * b

  • 裴蜀定理
    ax + by = gcd(a, b)
    ax + by = k * gcd(a, b)

  • 费马小定理
    若 p 为质数,且 gcd(a, p) = 1
    则 a^(p-1) ≡ 1 (mod p)

  • 威尔逊定理
    一个数为质数的充要条件:(p-1)! ≡ -1 (mod p)

  • 中国剩余定理

  • 欧拉定理

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容

  • 关于使用python实现RSA加密解密 一、非对称加密算法 1、乙方生成两把密钥(公钥和私钥)。公钥是公开的,任何...
    ttaymm阅读 919评论 0 0
  • 基本运算 取模(mod)取余(rem) 定义 给定一个正整数p,任意一个整数n,一定存在等式 : n = kp +...
    passwd_阅读 1,449评论 0 3
  • 首先重点讲解中国剩余定理,举例:一个数x除d1余r1,除d2余r2,除d3余r3,那么,求这个数的最小值 。解答:...
    碧影江白阅读 2,140评论 0 2
  • <cmath>中常用函数pow(base, exponent)sqrt(x)fmax、fmin、fabsceil、...
    舒也ella阅读 645评论 0 1
  • 下班又来吃一个人的韩餐。 光明路店新装修开业,小菜换了摆盘方式,但还是浩浩荡荡的八九个,而且可以续盘。 决定吃点新...
    爱干嘛干嘛阅读 148评论 0 4