成本最高可降40%!揭秘DataWorks资源组的Serverless进化之路

导读

在当今数据驱动的时代,高效、灵活地处理和分析海量数据成为企业数字化转型的关键。阿里云一站式智能大数据开发治理平台DataWorks具备强大的数据建模、数据集成、数据开发、数据分析和数据治理等功能,为企业提供了从数据接入到价值洞察的全链路解决方案,并不断在大数据开发治理领域推陈出新。其中,资源组的Serverless化,则标志着DataWorks在用户使用灵活度与成本效率提升到了新的高度,是DataWorks架构的重要演进。本文将深入揭秘DataWorks资源组的Serverless进化之路,探讨这一转变背后的技术逻辑、带来的变革以及对用户和行业的影响。

一、Serverless:云计算的新篇章

广义定义:Serverless强调的是一种架构理念和服务模型,所谓的“无服务器”并不是“没有服务器”,而指构建和运行不需要服务器管理的应用程序概念。它描述了一种更细粒度的部署模型,其中将应用程序打包为一个或多个功能,上传到平台,然后执行、扩展和计费,以响应当时确切的需求。

—— CNCF WG-Serverless Whitepaper v1.0

Serverless架构这种新的模式,意味着开发者可以更加专注于业务逻辑,而非基础设施的运维,从而极大地提高了开发效率和资源利用率。在费用方面,Serverless通常采用按需付费模式,仅在代码实际运行时计费,进一步降低了成本。

二、DataWorks资源组的挑战与战略选择

DataWorks资源组属于DataWorks的基础服务,是管理和隔离计算资源的逻辑单位,为DataWorks上的各个功能模块如数据开发、数据集成和数据调度等提供计算资源,资源组的状态将影响到相关功能的稳定运行,资源组的调度,将影响任务或服务运行的效率。
旧版资源组根据支持的功能模块不同分为不同的类型,涉及公共数据集成资源组、公共调度资源组、独享数据集成资源组、独享调度资源组、独享数据服务资源组五类,对用户来说计费逻辑复杂,购买管理不统一,使用过程中学习成本较高体验较差,同时资源预分配模式导致资源利用率低、弹性伸缩能力有限、以及运维成本较高,用户需要根据预测的工作负载手动配置和调整资源,这不仅增加了资源规划的难度,也难以应对突发流量或作业的快速变化,影响了整体的处理效率和响应速度。

面对这些挑战,DataWorks团队开始探索如何将Serverless的理念融合到资源组的管理中,依托于ASI统一资源调度架构,全面升级DataWorks的资源调度模型,旨在为用户提供一个灵活经济、安全高效的使用体验。

三、资源组Serverless化的转型之旅

数据调度完全Serverless化带来使用和付费方式转变

资源组转为采用Serverless的架构,调度任务完全Serverless化后能够根据实际需求自动管理和分配计算资源,用户无需根据任务波动预先或临时调整资源的大小,平台能够根据任务负载动态调整资源,从而大幅降低空闲时间和资源浪费,将成本节省直接回馈给用户。Serverless架构也带来了付费方式的转变,用户只需按实际使用的计算量付费,很大程度上无需预估或预留资源,极大地简化了成本管理和优化过程,单个场景计费案例下成本最高可减少40%。


任务类型完全区分驱动调度效率和使用体验提升

将调度型任务和计算型任务完全区分开来,解决计算任务带来的资源消耗影响调度任务的资源问题,这种方式使得任务调度能力获得进一步的提升,相比原先公共资源组最大任务并发数提升了4倍。完全解决了数据集成任务调度和计算资源冲突问题,平台通过异步链路模式,彻底屏蔽集成任务调度资源损耗,提升客户使用体验。

统一资源配额Quota管理实现资源平滑扩缩和高效利用

当业务波动时需要进行资源扩缩容,原有基于ECS架构下,由于需要对涉及到的物理或虚拟机实例进行手动配置,导致可能会遇到服务中断或性能波动的问题。为了解决这一问题,升级到Serverless架构后,通过Quota(资源配额)管理来控制资源使用,可以在不影响现有业务运行的情况下实现无缝的资源扩缩。同时这种机制下,扩缩容操作对用户是透明且无感的,能够极大程度的确保服务的连续性和稳定性。

同时,原有ECS架构下,会出现受限于单个ECS节点的资源上限和碎片化问题。Serverless架构下通过统一资源配额Quota管理的方式,实现对资源进行更精细化的管理,可以精确到每个任务级别的资源分配:

  • 最小任务资源管理为0.25vCPU的资源使用,相比原先最小4Core8G作为起始计算资源售卖,用户可以更加的充分灵活使用资源,资源利用更加高效;
  • 避免了因ECS规格的单点资源限制导致的任务调度瓶颈或阻塞,同时也提高了整体系统的响应能力和资源利用率;

容器运行时技术保障安全隔离

在Serverless架构下,如何保障数据和任务的安全隔离是不可避免要面临的问题。DataWorks通过采用如runD这样的容器运行时技术,使得每个任务都在独立的执行环境中运行,实现了资源、网络和环境的隔离。这种情况下,即使在同一租户内,不同任务间也无法互相干扰,减少了潜在的安全风险和数据泄露的可能性,相对于原有单租户内节点资源共享的资源组模型,安全性获得显著提升。这种任务级别的隔离机制是云原生安全实践的重要组成部分,为敏感应用和数据提供了更强的保护屏障。


四、Serverless资源组的核心优势

  • 通用型: 不区分用途,DataWorks任何能力都可以使用
  • 付费形式灵活: 支持按量、包年包月两种付费形式,其中可购买资源抵扣包抵扣按量计费
  • 支持运行中扩缩容(即将上线): 扩缩容时不影响已有任务的运行
  • 支持扩缩容定时计划(即将上线): 可根据业务运行规律,设置扩缩容计划,定时扩缩容,保障业务运行的同时最大限度减小开销
  • 按需使用无浪费: 用多少买多少,避免无效的资源限制,最小购买粒度为1CU
  • 高隔离性安全保障: 属于用户的独享资源,网络控制也完全由用户做主,提升了安全性和隔离性

五、Serverless资源组的快速使用与旧版迁移

目前Serverless资源组已经上线各大Region,用户可登陆DataWorks控制台在资源组列表的独享资源组页签下进行创建和使用,详细指导步骤可参见新增和使用Serverless资源组。如果用户已使用DataWorks的旧版资源组,并计划切换为Serverless资源组,可在切换前评估各项已有任务的资源消耗情况,然后切换到足够承载所有任务的Serverless资源组。为了能够平滑迁移,可参考不同任务所需CU的评估示例、切换前后可能的影响以及从旧版资源组切换到Serverless资源组的操作指导来进行操作。

在此,DataWorks推出300CU*H额度的资源抵扣包,DataWorks新用户可首月免费试用,抵扣按量付费的资源组使用,欢迎体验。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容