v0.12.0-敏感词/脏词词标签能力进一步增强

拓展阅读

敏感词工具实现思路

DFA 算法讲解

敏感词库优化流程

java 如何实现开箱即用的敏感词控台服务?

各大平台连敏感词库都没有的吗?

v0.10.0-脏词分类标签初步支持

v0.11.0-敏感词新特性:忽略无意义的字符,词标签字典

v0.12.0-敏感词/脏词词标签能力进一步增强

无标题.png

敏感词标签

说明

有时候我们希望对敏感词加一个分类标签:比如社情、暴/力等等。

这样后续可以按照标签等进行更多特性操作,比如只处理某一类的标签。

我们在 v0.10.0 版本,开始初步支持敏感词的标签分类,不过这个方法没有和以前的方法进行整合。

让我们先做一下回顾:

入门例子

接口

这里只是一个抽象的接口,用户可以自行定义实现。比如从数据库查询等。

public interface IWordTag {

    /**
     * 查询标签列表
     * @param word 脏词
     * @return 结果
     */
    Set<String> getTag(String word);

}

配置文件

我们可以自定义 dict 标签文件,通过 WordTags.file() 创建一个 WordTag 实现。

  • dict_tag_test.txt
五星红旗 政-治,国家

格式如下:

敏感词 tag1,tag2

实现

具体的效果如下,在引导类设置一下即可。

默认的 wordTag 是空的。

String filePath = "dict_tag_test.txt";
IWordTag wordTag = WordTags.file(filePath);

SensitiveWordBs sensitiveWordBs = SensitiveWordBs.newInstance()
        .wordTag(wordTag)
        .init();

Assert.assertEquals("[政-治, 国家]", sensitiveWordBs.tags("五星红旗").toString());;

后续会考虑引入一个内置的标签文件策略。

IWordResultHandler 结果处理类

功能说明

IWordResultHandler 可以对敏感词的结果进行处理,允许用户自定义。

内置实现目前有如下几种:

  • WordResultHandlers.word()

只保留敏感词单词本身。

  • WordResultHandlers.raw()

保留敏感词相关信息,包含敏感词的开始和结束下标。

  • WordResultHandlers.wordTags()

同时保留单词,和对应的词标签信息。

使用实例

1)基本例子

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";

List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList.toString());
List<String> wordList2 = SensitiveWordHelper.findAll(text, WordResultHandlers.word());
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList2.toString());

List<IWordResult> wordList3 = SensitiveWordHelper.findAll(text, WordResultHandlers.raw());
Assert.assertEquals("[WordResult{startIndex=0, endIndex=4}, WordResult{startIndex=9, endIndex=12}, WordResult{startIndex=18, endIndex=21}]", wordList3.toString());
  1. wordTags 例子

我们在 dict_tag_test.txt 文件中指定对应词的标签信息。

比如:

五星红旗 政治,国家
毛主席 政治,国家,伟人
天安门 政治,国家,地址

使用方法如下:

final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";

// 默认敏感词标签为空
List<WordTagsDto> wordList1 = SensitiveWordHelper.findAll(text, WordResultHandlers.wordTags());
Assert.assertEquals("[WordTagsDto{word='五星红旗', tags=[]}, WordTagsDto{word='毛主席', tags=[]}, WordTagsDto{word='天安门', tags=[]}]", wordList1.toString());

List<WordTagsDto> wordList2 = SensitiveWordBs.newInstance()
        .wordTag(WordTags.file("dict_tag_test.txt"))
        .init()
        .findAll(text, WordResultHandlers.wordTags());
Assert.assertEquals("[WordTagsDto{word='五星红旗', tags=[政治, 国家]}, WordTagsDto{word='毛主席', tags=[政治, 伟人, 国家]}, WordTagsDto{word='天安门', tags=[政治, 国家, 地址]}]", wordList2.toString());

这样就可以把此标签和我们以前的能力进行整合。

小结

敏感词标签的功能作用还是很大的,可以让我们根据不同的类别,进行不同的后续处理操作。

当然,最核心的还是对于标签数据的处理工作,具体可以参考:

v0.11.0-敏感词新特性:忽略无意义的字符,词标签

开源地址

为了便于大家学习,项目开源地址如下,欢迎 fork+star 鼓励一下老马~

sensitive-word

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容