题目链接
难度:中等 类型: 贪心算法
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。
一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
示例
输入:
[[10,16], [2,8], [1,6], [7,12]]
输出:
2
解释:
对于该样例,我们可以在x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆另外两个气球)。
解题思路
按照区间的结束点从小到大排序
若第i个区间的起始点小于第i-1个区间的结束点,说明有重叠,可公用一支箭
反之,没有重叠,需要再用一支箭
代码实现
class Solution(object):
def findMinArrowShots(self, points):
"""
:type points: List[List[int]]
:rtype: int
"""
if not points:
return 0
p = sorted(points, key=lambda x:x[1])
res = 1
end = p[0][1]
for i in range(1,len(p)):
if p[i][0] > end:
res+=1
end = p[i][1]
return res