《BIG DATA》引言部分

这本书好在三个地方:一是观点掷地有声,绝非主流媒体上若干讨论的简单汇总和平均,更不是一个宏大概念面前暧昧的叫好声。读者可能对其中一些观点并不认同,但是读完之后不可能一个都记不住。二是观念高屋建瓴,作者试图从很多实例和经验,包括历史事件中萃取出普适性的观念,而不仅仅是适用于几个特定情况的案例分析。三是例子丰富翔实,不长的篇幅包括了上百个学术和商业的实例。 --译者

带着译者评价的这三个特点,我将从观点,观念以及案例三个方面来进行本书的学习以及验证译者所说。

大数据 变革公共卫生
建立在大数据的基础之上的。这是当今社会所独有的一种新型能力:以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。

大数据,变革商业
棕色的头发,露齿的笑容,无邪的面孔,这就是奥伦·埃齐奥尼。

以一次令人懊恼的坐飞机体验为缘由创建了Farecast,这个热衷于使用大数据来解决问题的男人改变了商业的传统模式,将商业的价格浮动以及未来趋势公诸于世,为广大消费者带来了福音,成功地开启了一场伟大的商业革命。

大数据,变革思维
这仅仅只是一个开始,大数据时代对我们的生活,以及与世界交流的方式都提出了挑战。最惊人的是,社会需要放弃它对因果关系的渴求,而仅需关注相关关系。也就是说只需要知道是什么,而不需要知道为什么。这就推翻了自古以来的惯例,而我们做决定和理解现实的最基本方式也将受到挑战。

一如电力的发明与使用以来,我们只需要知道这些数据是什么能为我们带来什么样的帮助,而不应该还将目光聚集在为什么,打哪来的。

大数据也一样,量变导致质变。
虽然我们再也不能创造出一匹马的壁画,但是现在我们能每秒钟播放24幅不同形态的马的图片,这就是一种由量变导致的质变:一部电影与一幅静态的画有本质上的区别!

预测,大数据的核心
大数据的核心就是预测。它是把数学算法运用到海量的数据上来预测事情发生的可能性。

大数据,大挑战
大数据的精髓在于我们分析信息时的三个转变,这些转变将改变我们理解和组建社会的方法。
第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样。
第二个改变就是,研究数据如此之多,以至于我们不再热衷于追求精确度。(适当忽略微观层面上的精确度会让我们在宏观层面拥有更好的洞察力。)
第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系。(在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容