几个数字组成不同的几位数

大家好,这是我第一次在社区上写文章。把自己的一些心得分享给大家。好了,不啰嗦,直接上内容。

题目一:1、2、3、4这四个数,组成不同的三位数(百、十、个位都不相同)共有多少个?分别是什么?

这个问题,大伙网上一搜索还是有答案。笔者下面就列出网上常见的答案:

List nums =newArrayList<>();

for(intx =1; x <=4; x++) {

for(inty =1; y <=4; y++) {

for(intz =1;z <=4;z++) {

if(x != y && y != z && x != z) {

String str =""+ x + y + z;

nums.add(str);

}

}

}

}

这是用三层for循环的方式,再而比较每位上的数得出答案。读者想一想,这种思路会不会有什么局限呢?请思考3秒。。。好了,下面笔者就说说上面思路的局限。局限一:如若是1、2、3、4、5、6那不是要用6层for循环,再加上if(一长串逻辑表达式)。oh my god!这也太不可思议了吧。大伙认为这样麻烦繁琐,笔者也认为如此。局限二:如若是1、0、2、4、6那这还能用for循环麽?答案是不能。为什么呢?聪明的大伙已经想到了,这几个数字是不连续的。没错,确实如此。那到底该怎么办呢?静一静,都静一静,且听笔者一一道来。

对于局限二,还是比较好解决的。用数组或者集合把这几个数存储起来。之后用for循环,比较每位上的数就ok。注意,这里还要考虑首位不为0的情况。那麽,局限一又咋整呢?废话不多说,直接上代码。

方法一:

public static booleanisDiff(String sourStr) {

intlen = sourStr.length();

char[] chs = sourStr.toCharArray();

Set sets =newHashSet<>();

for(intj =0; j < len; j++) {

sets.add(chs[j]);

}

return sets.size() == len;

}

方法二:

public staticList comNum3() {

List nums =newArrayList<>();

String regex ="^[10456]{3}";

for(inti =104; i <=654; i++) {

String mstr = String.valueOf(i);

if(isDiff(mstr)) {

String str = String.valueOf(i);

if(str.matches(regex)) {

nums.add(str);

}

}

}

return nums;

}

方法一主要是用来判断每位数是否都不相同。这里,我们用到了Set集合类。Set集合类不允许存储相同的元素。所以呢,这里我们判断Set集合类中的元素个数与目标位数是否相等就大功告成啦。方法二呢,我们用到了正则表达式,意思是从几个数中取出任意3位组成一个数。不懂正则表达式的读者,自己好好恶补下。嘿嘿,笔者自己还处在了解正则表达式的路上呢。关键时刻来了,我们这里只用了一层for循环。你每看错,是的,就一层。为什么呢,5个数字组成一个三位数,肯定会有一个最大值和一个最小值。我们只需在这两个值之间遍历就ok啦。重要的是,这里还“暗地里”排除了首位为0的情况。写到这里,我们的任务基本上完成了。有兴趣的读者,还可以继续往看。题目二和题目一基本类似,思路也大致相同。笔者就直接上内容了。

题目二:六位数中的任意一个X,它的平方和为Y。编程实现组成Y的数字与组成X的数字都不相同的六位数有多少,分别是什么?

方法一:

public static booleanisDiff(String sourStr,String desStr) {

intlen = sourStr.length();

char[] chs = sourStr.toCharArray();

Set sets =newHashSet<>();

for(intj =0; j < len; j++) {

sets.add(chs[j]);

}

Iterator iter =  sets.iterator();

while(iter.hasNext()) {

charch = iter.next();

String fstr = String.valueOf(ch);

if(desStr.contains(fstr)) {

return false;

}

}

return true;

}

方法二:

public staticList comNum4() {

List nums =newArrayList<>();

for(longi =100000; i <=999999; i++) {

String st = String.valueOf(i);

longsum = (long) Math.pow(i,2);

String result = String.valueOf(sum);

if(isDiff(st,result)) {

 nums.add(result);

}

}

return nums;

}

好了,今天就写到这了。写的不好的地方,还请大家多多谅解与改正。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容

  • 背景 一年多以前我在知乎上答了有关LeetCode的问题, 分享了一些自己做题目的经验。 张土汪:刷leetcod...
    土汪阅读 12,723评论 0 33
  • 【程序1】 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔...
    叶总韩阅读 5,125评论 0 41
  • thiele插值算法 1点插值算法 function [C,c]=thiele(X,Y,Z)%X为插值点横坐标,Y...
    00crazy00阅读 1,968评论 0 4
  • 贪心算法 贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上...
    fredal阅读 9,202评论 3 52
  • 想控制大脑,掌控情绪很难。练习好几个月了,似乎感觉不到进展。但不可以放弃。 我在“孤岛”生活,很多时候会陷入一种恐...
    果大喵喵阅读 1,166评论 0 1